Chapter 8 Systems of Equations

Section 8.1 Solving Systems of Equations Graphically

Section 8.1 Page 435 Question 1

a) System A models the situation: to go off a ramp at different heights means two positive vertical intercepts and in this system the launch angles are different causing the bike with the lower trajectory to land sooner. System B is not correct because it shows both jumps starting from same height. System C has one start from zero, which would mean no ramp. In System D, a steeper trajectory would mean being in the air longer but the rider is going at the same speed.

b) The rider was at the same height and at same time after leaving the jump regardless of which ramp was chosen.

Section 8.1 Page 435 Question 2

For (0, -5): In $y = -x^2 + 4x - 5$ Left Side Right Side $-x^2 + 4x - 5$ y = -5 $=-(0)^{2}+4(0)-5$ = -5Left Side = Right Side In y = x - 5Left Side **Right Side** v = -5x-5= **0** - 5 = -5Left Side = Right Side For (3, -2): In $y = -x^2 + 4x - 5$ Left Side **Right Side** $-x^2 + 4x - 5$ y = -2 $=-(3)^2+4(3)-5$ = -2Left Side = Right Side In y = x - 5

Left Side y = -2 x - 5 = 3 - 5= -2

Left Side = Right Side So, both solutions are verified.

Section 8.1 Page 435 Question 3

a) The equations x + y + 3 = 0 and $x^2 + 6x + y + 7 = 0$ define a linear-quadratic system. The solutions are (-4, 1) and (-1, -2).

b) The equations $y = x^2 - 4x + 7$ and $y = \frac{1}{2}x^2 - 2x + 3$ define a quadratic-quadratic system. The system has no solution.

c) The equations $y = 2x^2 - 4x - 2$ and y = -4 define a linear-quadratic system. The solution is (1, -4).

Section 8.1 Page 435 Question 4

From the graph, the solutions are (-3, 4) and (0, 7).

For (-3, 4): In y = x + 7Left Side y = 4Left Side = Right Side In $y = (x + 2)^2 + 3$ Right Side

Left Side Right Side $(x+2)^2+3$ v = 4 $=(-3+2)^2+3$ = 1 + 3= 4 Left Side = Right Side For (0, 7): In y = x + 7Left Side **Right Side** *y* = **7** *x* + 7 =**0** + 7 = 7 Left Side = Right Side In $y = (x+2)^2 + 3$ Left Side Right Side $(x+2)^2+3$ y = 7 $=(0+2)^2+3$ = 4 + 3= 7 Left Side = Right Side **b)** f(x) = -x + 5 $g(x) = \frac{1}{2}(x-4)^2 + 1$ Y2=0.5(X-4)2+1 Y1= *X+5

From the graph, the solutions are (2, 3) and (4, 1). For (2, 3): In f(x) = -x + 5Left Side f(x) = 3Right Side -x + 5 = -2 + 5= 3

Left Side = Right Side

[Y=3]

X=2

From the graph, the solutions are (-14.5, -37.25) and (-2, -31).

For (-14.5, -37.25): $\ln x^2 + 16x + y = -59$ Left Side **Right Side** $x^{2} + 16x + y$ -59 $= (-14.5)^2 + 16(-14.5) + (-37.25)$ = 210.25 - 232 - 37.25= -59 Left Side = Right Side $\ln x - 2y = 60$ Left Side **Right Side** x - 2y60 = -14.5 - 2(-37.25)= 60Left Side = Right Side For (-2, -31): $\ln x^2 + 16x + y = -59$ Left Side **Right Side** $x^{2} + 16x + y$ -59 $= (-2)^{2} + 16(-2) + (-31)$ = 4 - 32 - 31= -59Left Side = Right Side $\ln x - 2y = 60$ Left Side **Right Side** x - 2y60 = -2 - 2(-31)= 60 Left Side = Right Side **d**) $x^2 + y - 3 = 0$ $x^2 - y + 1 = 0$ From the graph, the solutions are (-1, 2) and (1, 2)Y2=X2+1 Y1=-X2+3 ¹ X=-1 X=1 IY=2. IY=2

For (-1, 2): $\ln x^2 + y - 3 = 0$ Left Side Right Side $x^2 + y - 3$ 0 $=(-1)^2+2-3$ = 0Left Side = Right Side $\ln x^2 - y + 1 = 0$ Left Side Right Side $x^2 - y + 1$ 0 $=(-1)^2-2+1$ = 0Left Side = Right Side For (1, 2): $\ln x^2 + y - 3 = 0$ Left Side Right Side $x^{2} + y - 3$ = 0 $=(1)^{2}+2-3$ = 0Left Side = Right Side $\ln x^2 - y + 1 = 0$ Left Side Right Side $x^2 - y + 1$ 0 $=(1)^2 - 2 + 1$ = 0Left Side = Right Side e) $y = x^2 - 10x + 32$ $y = 2x^2 - 32x + 137$ Y1=X2-10X+32 Intersection: X=15 Y=107 8=7 🖯 Y=11

From the graph, the solutions are (7, 11) and (15, 107).

For (7, 11): In $y = x^2 - 10x + 32$ Left Side Right Side $x^2 - 10x + 32$ y = 7² - 10(7) + 32 = 11 =49 - 70 + 32= 11Left Side = Right Side $In y = 2x^2 - 32x + 137$ Left Side Right Side $x^2 - 10x + 32$ y $= 2(7)^2 - 32(7) + 137$ = 11 = 98 - 224 + 137= 11 Left Side = Right Side For (15, 107): $In y = x^2 - 10x + 32$ Left Side Right Side $x^2 - 10x + 32$ y $= 15^2 - 10(15) + 32$ = 107 = 225 - 150 + 32= 107Left Side = Right Side $In y = 2x^2 - 32x + 137$ Left Side Right Side $2x^2 - 32x + 137$ y $= 2(15)^2 - 32(15) + 137$ = 107 =450-480+137= 107

Left Side = Right Side

From the graph, the solutions are (5, 5) and (23, 221).

For (5, 5): In $h = d^2 - 16d + 60$ Left Side Right Side $d^2 - 16d + 60$ h $=5^2 - 16(5) + 60$ = 5 = 25 - 80 + 60= 5 Left Side = Right Side In h = 12d - 55Left Side Right Side 12d - 55h = 5 = 12(5) - 55= 5 Left Side = Right Side For (23, 221): In $h = d^2 - 16d + 60$ Left Side Right Side $d^2 - 16d + 60$ h $= 23^2 - 16(23) + 60$ = 221 = 529 - 368 + 60= 221Left Side = Right Side $\ln h = 12d - 55$ Left Side Right Side 12d - 55h = 221 = 12(23) - 55= 221Left Side = Right Side

c) $2v^2 + 20v + t = -40$ 5v + 2t + 26 = 0

From the graph, the solutions are (-6.75, 3.875) and (-2, -8).

For (-6.75, 3.875): $\ln 2v^2 + 20v + t = -40$ Left Side **Right Side** $2v^2 + 20v + t$ -40 $= 2(-6.75)^2 + 20(-6.75) + 3.875$ = 91.125 - 135 + 3.875= -40Left Side = Right Side In 5v + 2t + 26 = 0Left Side **Right Side** 5v + 2t + 260 = 5(-6.75) + 2(3.875) + 26= 0Left Side = Right Side For (-2, -8): In $2v^2 + 20v + t = -40$ Left Side **Right Side** $2v^2 + 20v + t$ -40 $= 2(-2)^2 + 20(-2) + (-8)$ = 8 - 40 + 8= -40Left Side = Right Side

From the graph, the solutions are approximately (-3.22, -1.54) and (-1.18, -3.98).

For
$$(-3.22, -1.54)$$
:
In $n^2 + 2n - 2m - 7 = 0$
Left Side Right Side
 $n^2 + 2n - 2m - 7$
 $= (-3.22)^2 + 2(-3.22) - 2(-1.54) - 7$
 $= 0.0084$
 ≈ 0
Left Side = Right Side
In $3n^2 + 12n - m + 6 = 0$
Left Side $3n^2 + 12n - m + 6 = 0$
Left Side $3n^2 + 12n - m + 6 = 0$
Left Side $3n^2 + 12n - m + 6 = 0$
Left Side $3n^2 + 12n - m + 6 = 0$
Left Side = Right Side
For $(-1.18, -3.98)$:
In $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side $n^2 + 2n - 2m - 7 = 0$
Left Side

Left Side

$$3n^2 + 12n - m + 6$$

 $= 3(-1.18)^2 + 12(-1.18) - (-3.98) + 6$
 $= -0.0028$
 ≈ 0
Left Side = Right Side

 $\ln 3n^2 + 12n - m + 6 = 0$

e) $0 = t^2 + 40t - h + 400$ $t^2 = h + 30t - 225$ From the graph, the solution is (-2.5, 306.25). Right Side 0

For (-2.5, 306.25):
In
$$0 = t^2 + 40t - h + 400$$

Left Side
0

Right Side

$$t^{2} + 40t - h + 400$$

 $= (-2.5)^{2} + 40(-2.5) - 306.25 + 400$
 $= 0$

Left Side = Right Side
In
$$t^2 = h + 30t - 225$$

Left Side
 t^2
Right Side
 $h + 30t - 225$
= $(-2.5)^2$
= 6.25
Left Side = Right Side

Section 8.1 Page 436 Question 6

The two parabolas have the same vertex, but different *a* values. Example: $y = x^2$ and $y = 2x^2$.

