f)
$$\frac{1}{2}x^{2} + 3x - 6 = 0$$
$$\frac{1}{2}(x^{2} + 6x) - 6 = 0$$
$$\frac{1}{2}(x^{2} + 6x + 9 - 9) - 6 = 0$$
$$\frac{1}{2}(x + 3)^{2} - \frac{9}{2} - 6 = 0$$
$$\frac{1}{2}(x + 3)^{2} - \frac{21}{2} = 0$$

Section 4.3 Page 240 Question 4

a)
$$x^{2} = 64$$

 $x = \pm 8$
b) $2s^{2} - 8 = 0$
 $2s^{2} = 8$
 $s = \pm 2$
c) $\frac{1}{3}t^{2} - 1 = 11$
 $\frac{1}{3}t^{2} = 12$
 $t^{2} = 36$
 $t = \pm 6$
b) $2s^{2} - 8 = 0$
 $2s^{2} = 8$
 $s = \pm 2$
d) $-y^{2} + 5 = -6$
 $y^{2} = 11$
 $y = \pm\sqrt{11}$

Section 4.3 Page 241 Question 5

a)
$$(x-3)^2 = 4$$

 $x-3 = \pm 2$
 $x = 3 \pm 2$
 $x = 3 + 2$ or $x = 3 - 2$
 $x = 5$ $x = 1$
c) $\left(d + \frac{1}{2}\right)^2 = 1$
 $d + \frac{1}{2} = \pm 1$

 $d = -\frac{1}{2} \pm 1$

 $d = -\frac{1}{2} + 1$ or $d = -\frac{1}{2} - 1$

 $d = \frac{1}{2} \qquad \qquad d = -\frac{3}{2}$

b)
$$(x+2)^2 = 9$$

 $x+2=\pm 3$
 $x=-2\pm 3$
 $x=1$ or $x=-2-3$
 $x=-5$
d) $\left(h-\frac{3}{4}\right)^2 = \frac{7}{16}$

$$\binom{n-\frac{1}{4}}{h-\frac{3}{4}} = \pm \sqrt{\frac{7}{16}}$$
$$h = \frac{3}{4} \pm \frac{\sqrt{7}}{4}$$
$$h = \frac{3 \pm \sqrt{7}}{4}$$

MHR • Pre-Calculus 11 Solutions Chapter 4

e)
$$(s+6)^2 = \frac{3}{4}$$

 $s+6 = \pm \sqrt{\frac{3}{4}}$
 $s = -6 \pm \frac{\sqrt{3}}{2}$
 $s = \frac{-12 \pm \sqrt{3}}{2}$
f) $(x+4)^2 = x+4 = x$
 $x = x + 4 = x$

= 18 $=\pm\sqrt{18}$ $=-4\pm 3\sqrt{2}$

Section 4.3 Page 241 Question 6

a)
$$x^{2} + 10x + 4 = 0$$

 $x^{2} + 10x = -4$
 $x^{2} + 10x + 25 = -4 + 25$
 $(x + 5)^{2} = 21$
 $x + 5 = \pm\sqrt{21}$
 $x = -5 \pm \sqrt{21}$

c)
$$3x^{2} + 6x + 1 = 0$$

 $x^{2} + 2x + \frac{1}{3} = 0$
 $x^{2} + 2x = -\frac{1}{3}$
 $x^{2} + 2x + 1 = -\frac{1}{3} + 1$
 $(x + 1)^{2} = \frac{2}{3}$
 $x + 1 = \pm \sqrt{\frac{2}{3}}$
 $x = -1 \pm \frac{\sqrt{6}}{3}$
 $x = \frac{-3 \pm \sqrt{6}}{3}$

b)
$$x^2 - 8x + 13 = 0$$

 $x^2 - 8x = -13$
 $x^2 - 8x + 16 = -13 + 16$
 $(x - 4)^2 = 3$
 $x - 4 = \pm\sqrt{3}$
 $x = 4 \pm \sqrt{3}$

d)
$$-2x^{2} + 4x + 3 = 0$$

 $x^{2} - 2x - \frac{3}{2} = 0$
 $x^{2} - 2x = \frac{3}{2}$
 $x^{2} - 2x + 1 = \frac{3}{2} + 1$
 $(x - 1)^{2} = \frac{5}{2}$
 $x - 1 = \pm \sqrt{\frac{5}{2}}$
 $x = 1 \pm \frac{\sqrt{10}}{2}$
 $x = \frac{2 \pm \sqrt{10}}{2}$

e)
$$-0.1x^2 - 0.6x + 0.4 = 0$$

 $x^2 + 6x - 4 = 0$
 $x^2 + 6x = 4$
 $x^2 + 6x + 9 = 4 + 9$
 $(x + 3)^2 = 13$
 $x + 3 = \pm\sqrt{13}$
 $x = -3 \pm\sqrt{13}$
f) $0.5x^2 - 4x - 6 = 0$
 $x^2 - 8x - 12 = 0$
 $x^2 - 8x = 12$
 $x^2 - 8x + 16 = 12 + 16$
 $(x - 4)^2 = 28$
 $x - 4 = \pm\sqrt{28}$
 $x = 4 \pm 2\sqrt{7}$

Section 4.3 Page 241 Question 7

a)
$$x^{2} - 8x - 4 = 0$$

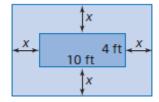
 $x^{2} - 8x = 4$
 $x^{2} - 8x + 16 = 4 + 16$
 $(x - 4)^{2} = 20$
 $x - 4 = \pm\sqrt{20}$
 $x - 4 = \sqrt{20}$ or $x - 4 = -\sqrt{20}$
 $x = 4 + \sqrt{20}$ $x = 4 - \sqrt{20}$
 $x \approx 8.5$ $x \approx -0.5$

b)
$$-3x^2 + 4x + 5 = 0$$

 $x^2 - \frac{4}{3}x = \frac{5}{3}$
 $x^2 - \frac{4}{3}x + \frac{4}{9} = \frac{5}{3} + \frac{4}{9}$
 $\left(x - \frac{2}{3}\right)^2 = \frac{19}{9}$
 $x - \frac{2}{3} = \pm \sqrt{\frac{19}{9}}$
 $x = \frac{2 \pm \sqrt{19}}{3}$
 $x = \frac{2 \pm \sqrt{19}}{3}$ or $x = \frac{2 - \sqrt{19}}{3}$
 $x \approx 2.1$ $x \approx -0.8$

c)
$$\frac{1}{2}x^2 - 6x - 5 = 0$$

 $x^2 - 12x = 10$
 $x^2 - 12x + 36 = 10 + 36$
 $(x - 6)^2 = 46$
 $x - 6 = \pm\sqrt{46}$
 $x - 6 = \sqrt{46}$ or $x - 6 = -\sqrt{46}$
 $x = 6 + \sqrt{46}$ $x = 6 - \sqrt{46}$
 $x \approx 12.8$ $x \approx -0.8$


d)
$$0.2x^2 + 0.12x - 11 = 0$$

 $x^2 + 0.6x = 55$
 $x^2 + 0.6x + 0.09 = 55 + 0.09$
 $(x + 0.3)^2 = 55.09$
 $x + 0.3 = \pm\sqrt{55.09}$
 $x + 0.3 = \sqrt{55.09}$ or $x + 0.3 = -\sqrt{55.09}$
 $x = -0.3 + \sqrt{55.09}$ $x = -0.3 - \sqrt{55.09}$
 $x \approx 7.1$ $x \approx -7.7$

e)
$$-\frac{2}{3}x^2 - x + 2 = 0$$

 $x^2 + \frac{3}{2}x = 3$
 $x^2 + \frac{3}{2}x + \frac{9}{16} = 3 + \frac{9}{16}$
 $\left(x + \frac{3}{4}\right)^2 = \frac{57}{16}$
 $x + \frac{3}{4} = \pm\sqrt{\frac{57}{16}}$
 $x = \frac{-3 \pm \sqrt{57}}{4}$
 $x = \frac{-3 \pm \sqrt{57}}{4}$ or $x = \frac{-3 - \sqrt{57}}{4}$
 $x \approx 1.1$ $x \approx -2.6$

f)
$$\frac{3}{4}x^2 + 6x + 1 = 0$$

 $x^2 + 8x = -\frac{4}{3}$
 $x^2 + 8x + 16 = -\frac{4}{3} + 16$
 $(x + 4)^2 = \frac{44}{3}$
 $x + 4 = \pm \sqrt{\frac{44}{3}}$
 $x + 4 = \sqrt{\frac{44}{3}}$ or $x + 4 = -\sqrt{\frac{44}{3}}$
 $x = -4 + \sqrt{\frac{44}{3}}$ $x = -4 - \sqrt{\frac{44}{3}}$
 $x \approx -0.2$ $x \approx -7.8$

Section 4.3 Page 241 Question 8

a) Let *x* represent the distance added to each side of the kennel.

b) An equation that models the new area is 80 = (4 + 2x)(10 + 2x) or $0 = 4x^2 + 28x - 40$.

c)
$$4x^{2} + 28x - 40 = 0$$

 $x^{2} + 7x = 10$
 $x^{2} + 7x + \frac{49}{4} = 10 + \frac{49}{4}$
 $\left(x + \frac{7}{2}\right)^{2} = \frac{89}{4}$
 $x + \frac{7}{2} = \pm \sqrt{\frac{89}{4}}$
 $x = \frac{-7 \pm \sqrt{89}}{2}$
 $x = \frac{-7 \pm \sqrt{89}}{2}$ or $x = \frac{-7 - \sqrt{89}}{2}$
 $x \approx 1.2$ $x \approx -8.2$

Since the distance added to the kennel cannot be negative, x = -8.2 is an extraneous root. The dimensions of the new kennel are 4 + 2(1.2), or 6.4 ft, by 10 + 2(1.2), or 12.4 ft.