Chapter 1

Completing the Square (a = 1)

To solve the following quadratic equation by completing the square, what constant term should you add?

a)
$$x_2 - 8x + 13 = 0$$

 $x_2 - 8x + c = -13 + c$

b)
$$x_2 + 6x + 1 = 0$$

 $x_2 + 6x + c = -1 + c$

c)
$$x_2 + 4x + 3 = 0$$

 $x_2 + 4x + c = -3 + c$

The Constant Term

Solve a Quadratic Equation by Completing the Square When a = 1

Solve $x^2 - 21 = -10x$ by completing the square. Express your answers to the nearest tenth.

Can you solve this equation by factoring? Explain.

Solution

$$x^{2} - 21 = -10x$$

$$x^{2} + 10x = 21$$

$$x^{2} + 10x + 25 = 21 + 25$$

$$(x + 5)^{2} = 46$$

$$x + 5 = \pm \sqrt{46}$$

Solve for x.

$$x + 5 = \sqrt{46}$$
 or $x + 5 = -\sqrt{46}$
 $x = -5 + \sqrt{46}$ or $x = -5 - \sqrt{46}$
 $x = 1.7823...$ $x = -11.7823...$

The exact roots are $-5 + \sqrt{46}$ and $-5 - \sqrt{46}$. The roots are 1.8 and -11.8, to the nearest tenth.

You can also see the solutions to this equation graphically as the x-intercepts of the graph of the function $f(x) = x^2 + 10x - 21$.

These occur at approximately (-11.8, 0) and (1.8, 0) and have values of -11.8 and 1.8, respectively.

Solve a Quadratic Equation by Completing the Square When $a \neq 1$

Determine the roots of $-2x^2 - 3x + 7 = 0$, to the nearest hundredth. Then, use technology to verify your answers.

Solution

$$-2x^2-3x+7=0$$

$$x^2+\frac{3}{2}x-\frac{7}{2}=0$$
 Divide both sides by a factor of -2 .
$$x^2+\frac{3}{2}x=\frac{7}{2}$$
 Isolate the variable terms on the left side.
$$x^2+\frac{3}{2}x+\frac{9}{16}=\frac{7}{2}+\frac{9}{16}$$
 Why is $\frac{9}{16}$ added to both sides?
$$\left(x+\frac{3}{4}\right)^2=\frac{65}{16}$$

$$x+\frac{3}{4}=\pm\sqrt{\frac{65}{16}}$$
 Solve for x .
$$x=-\frac{3}{4}\pm\frac{\sqrt{65}}{4}$$

$$x=\frac{-3\pm\sqrt{65}}{4}$$

The exact roots are $\frac{-3+\sqrt{65}}{4}$ and $\frac{-3-\sqrt{65}}{4}$.

The roots are 1.27 and -2.77, to the nearest hundredth.

Chapter 4

Completing the Square ($a \neq 1$)

To solve the following quadratic equation by completing the square, what common factor should you divide by and what constant term should you add?

The Common Factor

The Constant Term

a)
$$0.5x_2 - 4x + 3 = 0$$

b)
$$3x_2 + 6x + 1 = 0$$

c)
$$-2x^2 + 4x + 3 = 0$$

Apply Completing the Square

A defender kicks a soccer ball away from her own goal. The path of the kicked soccer ball can be approximated by the quadratic function $h(x) = -0.06x^2 + 3.168x - 35.34$, where x is the horizontal distance travelled, in metres, from the goal line and h is the height, in metres.

- a) You can determine the distance the soccer ball is from the goal line by solving the corresponding equation, $-0.06x^2 + 3.168x 35.34 = 0$. How far is the soccer ball from the goal line when it is kicked? Express your answer to the nearest tenth of a metre.
- b) How far does the soccer ball travel before it hits the ground?

Solution

a) Solve the equation $-0.06x^2 + 3.168x - 35.34 = 0$ by completing the square.

$$x^{2} - 52.8x + 589 = 0$$

$$x^{2} - 52.8x = -589$$

$$x^{2} - 52.8x + \left(\frac{52.8}{2}\right)^{2} = -589 + \left(\frac{52.8}{2}\right)^{2}$$

$$x^{2} - 52.8x + 696.96 = -589 + 696.96$$

$$(x - 26.4)^{2} = 107.96$$

$$x - 26.4 = \pm \sqrt{107.96}$$

 $-0.06x^2 + 3.168x - 35.34 = 0$

Divide both sides by a common factor of -0.06.

Isolate the variable terms on the left side.

Complete the square on the left side.

Take the square root of both sides.

$$x-26.4=\sqrt{107.96}$$
 or $x-26.4=-\sqrt{107.96}$ Solve for x . $x=26.4+\sqrt{107.96}$ $x=26.4-\sqrt{107.96}$ $x=16.0096...$

Chapter 4

Solving Quadratic Equations

As a class, discuss the conditions under which each method would be preferred over the others in solving a quadratic equation.

- a) graphing the corresponding quadratic function
- **b)** determining the square roots
- c) factoring
- d) completing the square
- e) using the quadratic formula

