Chapter 3 Quadratic Functions

Section 3.1 Investigating Quadratic Functions in Vertex Form

Section 3.1 Page 157 Question 1

a) The graph of $f(x) = 7x^2$ will open upward and be narrower than the graph of $f(x) = x^2$, since a > 1. The parabola will have a minimum value and a range of $\{y \mid y \ge 0, y \in R\}$.

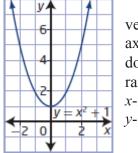
b) The graph of $f(x) = \frac{1}{6}x^2$ will open upward and be wider than the graph of $f(x) = x^2$, since 0 < a < 1. The parabola will have a minimum value and a range of $\{y \mid y \ge 0, y \in R\}$.

c) The graph of $f(x) = -4x^2$ will open downward and be narrower than the graph of $f(x) = x^2$, since a < -1. The parabola will have a maximum value and a range of $\{y \mid y \le 0, y \in R\}$.

d) The graph of $f(x) = -0.2x^2$ will open downward and be wider than the graph of $f(x) = x^2$, since -1 < a < 0. The parabola will have a maximum value and a range of $\{y \mid y \le 0, y \in R\}$.

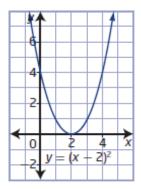
Section 3.1 Page 157 Question 2

a) $y = x^2$ and $y = x^2 + 1$ The shapes of the graphs are the same. Since q = 1 for $y = x^2 + 1$, its graph is translated 1 unit above the graph of $y = x^2$.



vertex: (0, 1) axis of symmetry: x = 0domain: $\{x \mid x \in R\}$ range: $\{y \mid y \ge 1, y \in R\}$ *x*-intercepts: none *y*-intercept: 1

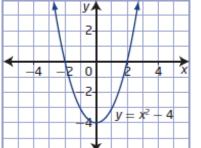
b) $y = x^2$ and $y = (x - 2)^2$ The shapes of the graphs are the same. Since p = 2 for $y = (x - 2)^2$, its graph is translated 2 units to the right of the graph of $y = x^2$.

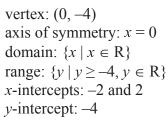


vertex: (2, 0) axis of symmetry: x = 2domain: $\{x \mid x \in R\}$ range: $\{y \mid y \ge 0, y \in R\}$ *x*-intercept: 2 *y*-intercept: 4

c) $y = x^2$ and $y = x^2 - 4$

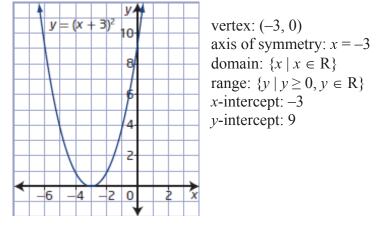
The shapes of the graphs are the same. Since q = -4 for $y = x^2 - 4$, its graph is translated 4 units below the graph of $y = x^2$.





d) $y = x^2$ and $y = (x + 3)^2$

The shapes of the graphs are the same. Since p = -3 for $y = (x + 3)^2$, its graph is translated 3 units to the right of the graph of $y = x^2$.



Section 3.1 Page 157 Question 3

a) For $f(x) = (x + 5)^2 + 11$, a = 1, p = -5, and q = 11. Since a = 1, the shape of the graph is the same as the graph of $f(x) = x^2$. Since p = -5 and q = 11, the vertex is located at (-5, 11).

To sketch the graph of $f(x) = (x + 5)^2 + 11$, transform the graph of $f(x) = x^2$ by translating 5 units to the left and 11 units up.

b) For $f(x) = -3x^2 - 10$, a = -3, p = 0, and q = -10. Since a < -1, the shape of the graph is narrower than the graph of $f(x) = x^2$ and opens downward. Since p = 0 and q = -10, the vertex is located at (0, -10).

To sketch the graph of $f(x) = -3x^2 - 10$, transform the graph of $f(x) = x^2$ by

- multiplying the *v*-values by a factor of 3
- reflecting in the *x*-axis
- translating 10 units down

c) For $f(x) = 5(x + 20)^2 - 21$, a = 5, p = -20, and q = -21. Since a > 1, the shape of the graph is narrower than the graph of $f(x) = x^2$ and opens upward. Since p = -20 and q = -21, the vertex is located at (-20, -21).

To sketch the graph of $f(x) = 5(x + 20)^2 - 21$, transform the graph of $f(x) = x^2$ by

- multiplying the *v*-values by a factor of 5
- translating 20 units to the left and 21 units down

d) For
$$f(x) = -\frac{1}{8}(x - 5.6)^2 + 13.8$$
, $a = -\frac{1}{8}$, $p = 5.6$, and $q = 13.8$. Since $-1 < a < 0$, the

shape of the graph is wider than the graph of $f(x) = x^2$ and opens downward. Since p = 5.6and q = 13.8, the vertex is located at (5.6, 13.8).

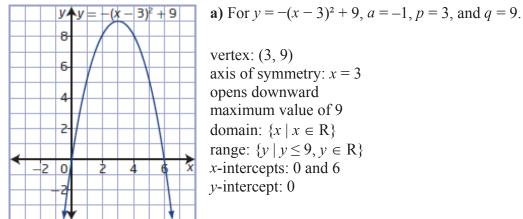
To sketch the graph of $f(x) = -\frac{1}{8}(x - 5.6)^2 + 13.8$, transform the graph of $f(x) = x^2$ by

• multiplying the *y*-values by a factor of $\frac{1}{9}$

• reflecting in the *x*-axis

• translating 5.6 units to the right and 13.8 units up

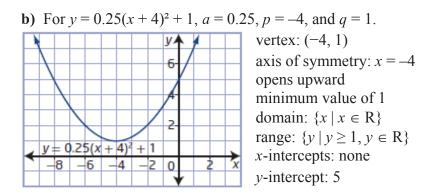
Section 3.1 **Page 157 Question 4**



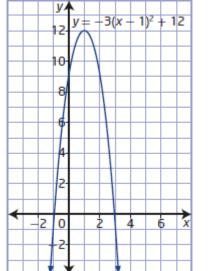
axis of symmetry:
$$x = 3$$

opens downward
maximum value of 9
domain: $\{x \mid x \in R\}$

range: $\{y \mid y \le 9, y \in \mathbb{R}\}$ x-intercepts: 0 and 6



c) For
$$y = -3(x-1)^2 + 12$$
, $a = -3$, $p = 1$, and $q = 12$.



vertex: (1, 12) axis of symmetry: x = 1opens downward maximum value of 12 domain: $\{x \mid x \in R\}$ range: $\{y \mid y \le 12, y \in R\}$ *x*-intercepts: -1 and 3 *y*-intercept: 9

d) For
$$y = \frac{1}{2}(x-2)^2 - 2$$
, $a = \frac{1}{2}$, $p = 2$, and $q = -2$.
vertex: $(2, -2)$
axis of symmetry: $x = 2$
opens upward
minimum value of -2
domain: $\{x \mid x \in R\}$
range: $\{y \mid y \ge -2, y \in R\}$
x-intercepts: 0 and 4
y-intercept: 0