Section 2.3 Page 108 Question 6

a) Given $\angle A = 39^\circ$, a = 10 cm, and b = 14 cm: $b \sin A = 14 \sin 39^\circ$ $b \sin A = 8.810...$ Then, $b \sin A < a < b$ so there are two solutions.

b) Given $\angle A = 123^\circ$, a = 23 cm, and b = 12 cm: $\angle A$ is obtuse and a > b so there is one solution.

c) Given $\angle A = 145^\circ$, a = 18 cm, and b = 10 cm: $\angle A$ is obtuse and a > b so there is one solution.

d) Given $\angle A = 124^\circ$, a = 1 cm, and b = 2 cm: $\angle A$ is obtuse and a < b so there is no solution.

Section 2.3 Page 108 Question 7

a)
$$\sin A = \frac{h}{b}$$

 $h = b \sin A$ Then, from the diagram, $a > b \sin A$, or a > h and b > h.

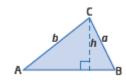
b)
$$\sin A = \frac{h}{h}$$

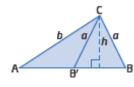
 $h = b \sin A$ Then, from the diagram, $b \sin A < a < b$.

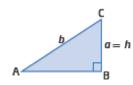
c) $\sin A = \frac{h}{b}$ $h = b \sin A$ Also, from the diagram, $a = b \sin A$.

d)
$$\sin A = \frac{h}{b}$$

 $h = b \sin A$
From the diagram, $a \ge b > b \sin A$.





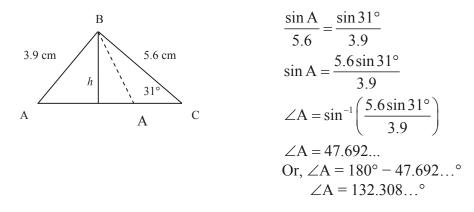


Section 2.3 Page 109 Question 8

a) The diagram shows the given information.

This is an ambiguous case, since $h = 5.6 \sin 31^\circ = 2.884...$

Because h is less than 5.6 and 3.9, two solutions are possible.



$$\angle B = 180^{\circ} - (31^{\circ} + 48^{\circ})$$
 or $\angle B = 180^{\circ} - (31^{\circ} + 132^{\circ})$
 $\angle B = 101^{\circ}$ $\angle B = 17^{\circ}$

Determine *b* for each measure of $\angle B$:

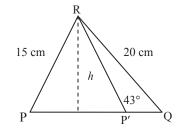
$$\frac{b}{\sin 101^{\circ}} = \frac{3.9}{\sin 31^{\circ}} \qquad \qquad \frac{b}{\sin 17^{\circ}} = \frac{3.9}{\sin 31^{\circ}} \\ b = \frac{3.9 \sin 101^{\circ}}{\sin 31^{\circ}} \qquad \qquad b = \frac{3.9 \sin 17^{\circ}}{\sin 31^{\circ}} \\ b = 7.433... \qquad \qquad b = 2.213...$$

In $\triangle ABC$, b = 7.4 cm, to the nearest tenth of a centimetre, and $\angle A = 48^{\circ}$ and $\angle B = 101^{\circ}$, both to the nearest degree, or

b = 2.2 cm, to the nearest tenth of a centimetre, and $\angle A = 132^{\circ}$ and $\angle B = 17^{\circ}$, both to the nearest degree.

diagram.

b)



 $h = 20 \sin 43^\circ = 13.639...$ Since this is less than 15 and less than 20, two solutions are possible, as shown in the

$$\frac{\sin P}{20} = \frac{\sin 43^{\circ}}{15}$$

$$\sin P = \frac{20 \sin 43^{\circ}}{15}$$

$$\angle P = \sin^{-1} \left(\frac{20 \sin 43^{\circ}}{15}\right)$$

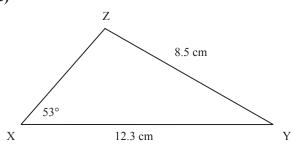
$$\angle P = 65.413...$$

So $\angle P = 65^{\circ}$, or $\angle P = 180^{\circ} - 65^{\circ} = 115^{\circ}$.
Then, $\angle R = 180^{\circ} - (65^{\circ} + 43^{\circ}) = 72^{\circ}$, or $\angle R = 180^{\circ} - (115^{\circ} + 43^{\circ}) = 22^{\circ}$.

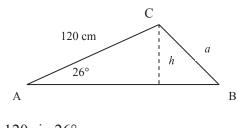
Now determine *r* for each value of $\angle R$:

r	15	or		r _ 15		
sin 72°	$\frac{1}{\sin 43^{\circ}}$		si	n 22°	$\sin 43^{\circ}$	
$r = \frac{15\sin 72^{\circ}}{\sin 43^{\circ}}$			$r = 15 \sin 22^{\circ}$			
			$r = \frac{1}{\sin 43^{\circ}}$			
r = 20.917			<i>r</i> = 8.239			
TT1 C	·		650		700 1 DO	0

Therefore, in $\triangle PQR$, $\angle P = 65^\circ$, $\angle R = 72^\circ$, and PQ = 20.9 cm, or $\angle P = 115^\circ$, $\angle R = 22^\circ$, and PQ = 8.2 cm.



 $h = 12.3 \sin 53^\circ = 9.823...$ Since 8.5 < h, no solution is possible.



 $h = 120 \sin 26^{\circ}$ h = 52.604...

a) There is one oblique triangle if $a \ge 120$ cm.