c) A quadratic function of the form $y = a(x-p)^2 + q$ will have no real roots if a > 0 and the vertex is above the *x*-axis.

Section 4.4 The Quadratic Formula

Section 4.4 Page 254 Question 1

a) For $x^2 - 7x + 4 = 0$, a = 1, b = -7, and c = 4. $b^2 - 4ac = (-7)^2 - 4(1)(4)$ $b^2 - 4ac = 49 - 16$ $b^2 - 4ac = 33$

Since the value of the discriminant is positive, there are two distinct real roots. The graph of the corresponding quadratic function confirms that there are two distinct x-intercepts.

Y1=X2-7X+4		
X=0	V=4	Ţ

b) For $s^2 + 3s - 2 = 0$, a = 1, b = 3, and c = -2. $b^2 - 4ac = 3^2 - 4(1)(-2)$ $b^2 - 4ac = 9 + 8$ $b^2 - 4ac = 17$

Since the value of the discriminant is positive, there are two distinct real roots. The graph of the corresponding quadratic function confirms that there are two distinct x-intercepts.

c) For
$$r^2 + 9r + 6 = 0$$
, $a = 1$, $b = 9$, and $c = 6$.
 $b^2 - 4ac = 9^2 - 4(1)(6)$
 $b^2 - 4ac = 81 - 24$
 $b^2 - 4ac = 57$

Since the value of the discriminant is positive, there are two distinct real roots. The graph of the corresponding quadratic function confirms that there are two distinct *x*-intercepts.

d) For
$$n^2 - 2n + 1 = 0$$
, $a = 1$, $b = -2$, and $c = 1$.
 $b^2 - 4ac = (-2)^2 - 4(1)(1)$
 $b^2 - 4ac = 4 - 4$
 $b^2 - 4ac = 0$

Since the value of the discriminant is zero, there is one distinct real root.

The graph of the corresponding quadratic function confirms that there is one *x*-intercept.

e) For $7y^2 + 3y + 2 = 0$, a = 7, b = 3, and c = 2. $b^2 - 4ac = 3^2 - 4(7)(2)$ $b^2 - 4ac = 9 - 56$ $b^2 - 4ac = -47$

Since the value of the discriminant is negative, there are no real roots. The graph of the corresponding quadratic function confirms that there are no *x*-intercepts.

f) For
$$4t^2 + 12t + 9 = 0$$
, $a = 4$, $b = 12$, and $c = 9$.
 $b^2 - 4ac = 12^2 - 4(4)(9)$
 $b^2 - 4ac = 144 - 144$
 $b^2 - 4ac = 0$

Since the value of the discriminant is zero, there is one distinct real root. The graph of the corresponding quadratic function confirms that there is one *x*-intercept.

Y1=4X2+12X+9	8
1 57	
I 17	E
	:
	E
	E
8=0	17=9

Section 4.4 Page 254 Question 2

a) For
$$f(x) = x^2 - 2x - 14$$
, $a = 1$, $b = -2$, and $c = -14$.
 $b^2 - 4ac = (-2)^2 - 4(1)(-14)$
 $b^2 - 4ac = 4 + 56$
 $b^2 - 4ac = 60$

Since the value of the discriminant is positive, the function has two zeros.

b) For
$$g(x) = -3x^2 + 0.06x + 4$$
, $a = -3$, $b = 0.06$, and $c = 4$.
 $b^2 - 4ac = 0.06^2 - 4(-3)(4)$
 $b^2 - 4ac = 0.0036 + 48$
 $b^2 - 4ac = 48.0036$
Since the value of the discriminant is positive, the function b

Since the value of the discriminant is positive, the function has two zeros.

c) For
$$f(x) = \frac{1}{4}x^2 - 3x + 9$$
, $a = \frac{1}{4}$, $b = -3$, and $c = 9$.
 $b^2 - 4ac = (-3)^2 - 4\left(\frac{1}{4}\right)(9)$
 $b^2 - 4ac = 9 - 9$
 $b^2 - 4ac = 0$
Since the value of the discriminant is zero, the function has

Since the value of the discriminant is zero, the function has one zero.

d) For
$$f(v) = -v^2 + 2v - 1$$
, $a = -1$, $b = 2$, and $c = -1$.
 $b^2 - 4ac = 2^2 - 4(-1)(-1)$
 $b^2 - 4ac = 4 - 4$
 $b^2 - 4ac = 0$
Since the value of the discriminant is zero, the function has one zero.

e) For $f(x) = \frac{1}{2}x^2 - x + \frac{5}{2}$, $a = \frac{1}{2}$, b = -1, and $c = \frac{5}{2}$. $b^2 - 4ac = (-1)^2 - 4\left(\frac{1}{2}\right)\left(\frac{5}{2}\right)$ $b^2 - 4ac = 1 - 20$ $b^2 - 4ac = -19$

Since the value of the discriminant is negative, the function has no zeros.

f) For
$$g(y) = -6y^2 + 5y - 1$$
, $a = -6$, $b = 5$, and $c = -1$.
 $b^2 - 4ac = 5^2 - 4(-6)(-1)$
 $b^2 - 4ac = 25 - 24$
 $b^2 - 4ac = 1$

Since the value of the discriminant is positive, the function has two zeros.

9.

Section 4.4 Page 254 Question 3

a) For
$$7x^2 + 24x + 9 = 0$$
, $a = 7$, $b = 24$, and $c = x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-24 \pm \sqrt{24^2 - 4(7)(9)}}{2(7)}$
 $x = \frac{-24 \pm \sqrt{324}}{14}$
 $x = \frac{-24 \pm 18}{14}$
 $x = \frac{-24 \pm 18}{14}$ or $x = \frac{-24 - 18}{14}$
 $x = \frac{-6}{14}$ $x = \frac{-42}{14}$
 $x = -\frac{3}{7}$ $x = -3$
The roots are $-\frac{3}{7}$ and -3 .