e) $\tan \theta = \frac{y}{x} = \frac{-1}{-1}$, so x = -1 and y = -1 for an angle in quadrant III. Use the Pythagorean Theorem to determine r. $r^2 = x^2 + y^2$ $r^2 = (-1)^2 + (-1)^2$ $r = \sqrt{2}$ Then, $\sin \theta = \frac{y}{r}$ and $\cos \theta = \frac{x}{r}$ $\sin \theta = \frac{-1}{\sqrt{2}}$ or $-\frac{\sqrt{2}}{2}$ $\cos \theta = \frac{-1}{\sqrt{2}}$ or $-\frac{\sqrt{2}}{2}$

Section 2.2 Page 97 Question 9

a) The diagram shows the two possible positions of θ , $0^{\circ} \le \theta < 360^{\circ}$, for which $\cos \theta = \frac{1}{2}$.

 $\cos \theta = \frac{1}{2}$ is part of the 30°-60°-90° right triangle with sides 1, 2, and $\sqrt{3}$. The reference angle for θ is 60°. In quadrant I, $\theta = 60^\circ$. In quadrant IV, $\theta = 360^\circ - 60^\circ$ or 300°.

b) The diagram shows the two possible positions of θ , $0^{\circ} \le \theta < 360^{\circ}$, for which $\cos \theta = -\frac{1}{\sqrt{2}}$.

For $\cos \theta = -\frac{1}{\sqrt{2}}$, refer to the 45°-45°-90° right triangle with sides 1, 1, and $\sqrt{2}$. The reference angle for θ is 45°. In quadrant II, $\theta = 180^\circ - 45^\circ$ or 135°. In quadrant III, $\theta = 180^\circ + 45^\circ$ or 225°. c) The diagram shows the two possible positions of θ , $0^{\circ} \le \theta < 360^{\circ}$, for which

For $\tan \theta = -\frac{1}{\sqrt{3}}$, refer to the 30°-60°-90° right triangle with sides 1, 2, and $\sqrt{3}$. The reference angle for θ is 30°. In quadrant II, $\theta = 180^\circ - 30^\circ$ or 150°. In quadrant IV, $\theta = 360^\circ - 30^\circ$ or 330°.

d) The diagram shows the two possible positions of θ , $0^{\circ} \le \theta < 360^{\circ}$, for which

For $\sin \theta = -\frac{\sqrt{3}}{2}$, refer to the 30°-60°-90° right triangle with sides 1, 2, and $\sqrt{3}$. The reference angle for θ is 60°. In quadrant III, $\theta = 180^\circ + 60^\circ$ or 240°. In quadrant IV, $\theta = 360^\circ - 60^\circ$ or 300°.

e) The diagram shows the two possible positions of θ , $0^{\circ} \le \theta < 360^{\circ}$, for which $\tan \theta = \sqrt{3}$.

For tan $\theta = \sqrt{3}$, refer to the 30°-60°-90° right triangle with sides 1, 2, and $\sqrt{3}$. The reference angle for θ is 60°. In quadrant I, $\theta = 60^{\circ}$. In quadrant IV, $\theta = 180^{\circ} + 60^{\circ}$ or 240°.

f) The diagram shows the two possible positions of θ , $0^{\circ} \le \theta < 360^{\circ}$, for which tan $\theta = -1$.

For tan $\theta = -1$, refer to the 45°-45°-90° right triangle with sides 1, 1, and $\sqrt{2}$. The reference angle for θ is 45°. In quadrant II, $\theta = 180^\circ - 45^\circ$ or 135°. In quadrant IV, $\theta = 360^\circ - 45^\circ$ or 315°.

θ	sin θ	cos θ	tan 0
0°	0	1	0
90°	1	0	undefined
180°	0	-1	0
270°	-1	0	undefined
360°	0	1	0

Section 2.2 Page 97 Question 10

Section 2.2 Page 97 Question 11

a) Given P(-8, 6), use x = -8, y = 6, and the Pythagorean Theorem to determine *r*. $r^2 = x^2 + y^2$ $r^2 = (-8)^2 + 6^2$ $r^2 = 64 + 36$ $r^2 = 100$ r = 10 $\sin \theta = \frac{y}{r}$ $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$ $\sin \theta = \frac{6}{10}$ or $\frac{3}{5}$ $\cos \theta = \frac{-8}{10}$ or $-\frac{4}{5}$ $\tan \theta = \frac{6}{-8}$ or $-\frac{3}{4}$ b) Given P(5, -12), use x = 5, y = -12, and the Pythagorean Theorem to determine *r*. $r^2 = x^2 + y^2$ $r^2 = 5^2 + (-12)^2$ $r^2 = 25 + 144$ $r^2 = 169$ r = 13

$\sin \theta = \frac{y}{r}$	$\cos\theta = \frac{x}{r}$	$\tan \theta = \frac{y}{x}$
$\sin\theta = \frac{-12}{13}$	$\cos\theta = \frac{5}{13}$	$\tan \theta = \frac{-12}{5}$

Question 12

b)
$$\tan \theta_R = \frac{4}{9}$$

 $\theta_R = \tan^{-1}\left(\frac{4}{9}\right)$
 $\theta_R \approx 24^\circ$
c) $\theta = 180^\circ - 24^\circ$
 $\theta = 156^\circ$, to the nearest degree

Question 13

b)
$$\tan \theta_R = \frac{24}{7}$$

 $\theta_R = \tan^{-1}\left(\frac{24}{7}\right)$
 $\theta_R \approx 74^\circ$
c) $\theta = 360^\circ - 74^\circ$
 $\theta = 286^\circ$ to the parent day

 $\theta = 286^\circ$, to the nearest degree

Section 2.2 Page 97 Question 14

a) Given P(2, 4), then x = 2 and y = 4. Use the Pythagorean Theorem to determine *r*. $r^2 = x^2 + y^2$ $r^2 = 2^2 + 4^2$ $r^2 = 20$ $r = \sqrt{20}$ Then, $\sin \theta = \frac{y}{r}$ $\sin \theta = \frac{4}{\sqrt{20}} = \frac{4}{2\sqrt{5}}$ or $\frac{2\sqrt{5}}{5}$ b) Given Q(4, 8), then x = 4 and y = 8. Then, $r^2 = x^2 + y^2$ $r^2 = 4^2 + 8^2$ $r^2 = 80$ $r = \sqrt{80}$ $\sin \theta = \frac{y}{r}$ $\sin \theta = \frac{8}{\sqrt{80}} = \frac{8}{4\sqrt{5}}$ or $\frac{2\sqrt{5}}{5}$ c) Given R(8, 16), then x = 8 and y = 16. Then, $r^2 = x^2 + y^2$ $r^2 = 8^2 + 16^2$