Section 4.2 Page 230 Question 6

a) Let
$$r = 5b - 3$$
.
 $4(5b - 3)^2 + 10(5b - 3) - 6$
 $= 4r^2 + 10r - 6$
 $= 2(2r^2 + 5r - 3)$
 $= 2(2(5b - 3) - 1)(5b - 3 + 3)$
 $= 2(10b - 7)(5b)$

b) Use the pattern for factoring a difference of squares. $16(x^2 + 1)^2 - 4(2x)^2$ = $[4(x^2 + 1) - 2(2x)][4(x^2 + 1) + 2(2x)]$ = $(4x^2 + 4 - 4x)(4x^2 + 4 + 4x)$ = $16(x^2 - x + 1)(x^2 + x + 1)$

c)
$$-\frac{1}{4}(2x)^2 + 25(2y^3)^2$$

 $= -\frac{1}{4}[(2x)^2 - 100(2y^3)^2]$
 $= -\frac{1}{4}[2x - 10(2y^3)][2x + 10(2y^3)]$
 $= -\frac{1}{4}(2x - 20y^3)(2x + 20y^3)$
 $= -(x - 10y^3)(x + 10y^3) \text{ or } (10y^3 - x)(10y^3 + x)$

Section 4.2 Page 230 Question 7

a)
$$(x+3)(x+4) = 0$$

 $x+3=0$ or $x+4=0$
 $x=-3$ $x=-4$
The roots are -3 and -4 .

b)
$$(x-2)\left(x+\frac{1}{2}\right) = 0$$

 $x-2=0$ or $x+\frac{1}{2}=0$
 $x=2$ $x=-\frac{1}{2}$
The roots are 2 and $-\frac{1}{2}$.

c) (x+7)(x-8) = 0x + 7 = 0 or x - 8 = 0x = -7x = 8The roots are -7 and 8. **d**) x(x + 5) = 0x = 0 or x + 5 = 0x = -5The roots are 0 and -5. e) (3x+1)(5x-4) = 03x + 1 = 0 or 5x - 4 = 03x = -15x = 4 $x = -\frac{1}{3}$ $x = \frac{4}{5}$ The roots are $-\frac{1}{3}$ and $\frac{4}{5}$. f) 2(x-4)(7-2x) = 0x - 4 = 0 or 7 - 2x = 0-2x = -7x = 4 $x = \frac{7}{2}$ The roots are 4 and $\frac{7}{2}$. Section 4.2 Page 230 **Question 8** $10n^2 - 40 = 0$ a) $10(n^2 - 4) = 0$ 10(n-2)(n+2) = 0n - 2 = 0n + 2 = 0or n = -2n = 2For *n* = 2: For n = -2: Left Side Right Side Left Side **Right Side** $10n^2 - 40$ $10n^2 - 40$ 0 0 $=10(2)^2-40$ $=10(-2)^2-40$ =40 - 40=40 - 40= 0= 0

Left Side = Right Side The roots are 2 and -2.

Left Side = Right Side

b)
$$\frac{1}{4}x^2 + \frac{5}{4}x + 1 = 0$$

 $\frac{1}{4}(x^2 + 5x + 4) = 0$
 $\frac{1}{4}(x + 4)(x + 1) = 0$
 $x + 4 = 0$ or $x + 1 = 0$
 $x = -4$ $x = -1$
For $x = -1$:
Left Side Right Side Left Side Right Side
 $\frac{1}{4}x^2 + \frac{5}{4}x + 1$ 0 $\frac{1}{4}x^2 + \frac{5}{4}x + 1$ 0
 $= \frac{1}{4}(-4)^2 + \frac{5}{4}(-4) + 1$ $= \frac{1}{4}(-1)^2 + \frac{5}{4}(-1) + 1$
 $= 4 - 5 + 1$ $= \frac{1}{4} - \frac{5}{4} + 1$
 $= 0$ Left Side = Right Side Left Side Right Side
The roots are -4 and -1 .
c) $3w^2 + 28w + 9 = 0$
 $(3w + 1)(w + 9) = 0$
 $3w - 1$ $w = -9$
 $w = -\frac{1}{3}$
For $w = -\frac{1}{3}$:
For $w = -\frac{1}{3}$:
For $w = -\frac{1}{3}$;
For $w = -\frac{1}{3}$;
For $w = -\frac{1}{3}$;
 $= 3(-\frac{1}{3})^2 + 28(-\frac{1}{3}) + 9$ $= 3(-9)^2 + 28(-9) + 9$
 $= \frac{1}{3} - \frac{28}{3} + \frac{27}{3}$ $= 243 - 252 + 9$
 $= 0$ Left Side = Right Side Left Side = Right Side
The roots are $-\frac{1}{3}$ and -9 .

d) $8y^2 - 22y + 15 = 0$ (4y-5)(2y-3) = 04y-5=0 or 2y-3=04y=5 2y=3 $y=\frac{5}{4} y=\frac{3}{2}$ For $y = \frac{5}{4}$: For $y = \frac{3}{2}$: Right Side Left Side $8v^2 - 22y + 15$ Left Side Right Side $8y^2 - 22y + 15$ 0 $=8\left(\frac{5}{4}\right)^2-22\left(\frac{5}{4}\right)+15$ $=8\left(\frac{3}{2}\right)^{2}-22\left(\frac{3}{2}\right)+15$ $=\frac{25}{2}-\frac{55}{2}+\frac{30}{2}$ = 18 - 33 + 15= 0= 0Left Side = Right Side Left Side = Right Side The roots are $\frac{5}{4}$ and $\frac{3}{2}$. e) $d^2 + \frac{5}{2}d + \frac{3}{2} = 0$ $\frac{1}{2}(2d^2+5d+3)=0$ $\frac{1}{2}(2d+3)(d+1) = 0$ 2d + 3 = 0 or d + 1 = 02d = -3 d = -1 $d = -\frac{3}{2}$ For $d = -\frac{3}{2}$: For y = -1: Right Side Left Side Left Side Right Side $d^2 + \frac{5}{2}d + \frac{3}{2}$ 0 $d^2 + \frac{5}{2}d + \frac{3}{2}$ 0 $=\left(-\frac{3}{2}\right)^{2}+\frac{5}{2}\left(-\frac{3}{2}\right)+\frac{3}{2}$ $=(-1)^2+\frac{5}{2}(-1)+\frac{3}{2}$ $=\frac{9}{4}-\frac{15}{4}+\frac{6}{4}$ $=\frac{2}{2}-\frac{5}{2}+\frac{3}{2}$ = 0= 0Left Side = Right Side Left Side = Right Side The roots are $-\frac{3}{2}$ and -1.

f) $4x^2 - 12x + 9 = 0$ (2x - 3)(2x - 3) = 0 2x - 3 = 0 2x = 3 $x = \frac{3}{2}$ For $x = \frac{3}{2}$: Left Side Right Side $4x^2 - 12x + 9 = 0$ $= 4\left(\frac{3}{2}\right)^2 - 12\left(\frac{3}{2}\right) + 9$ = 9 - 18 + 9 = 0Left Side = Right Side The root is $\frac{3}{2}$.

Section 4.2 Page 230 Question 9

a) $k^2 - 5k = 0$ k(k-5) = 0k = 0 or k - 5 = 0k = 5For k = 0: For k = 5: Right Side Left Side Left Side **Right Side** $k^2 - 5k$ $k^{2} - 5k$ 0 0 $=5^2-5(5)$ =**0**² - 5(**0**) = 0 - 0= 25 - 25= 0= 0Left Side = Right Side Left Side = Right Side The roots are 0 and 5.

b)
$$9x^2 = x + 8$$

 $9x^2 - x - 8 = 0$
 $(9x + 8)(x - 1) = 0$
 $9x + 8 = 0$ or $x - 1 = 0$
 $9x = -8$ $x = 1$
 $x = -\frac{8}{9}$

For
$$x = -\frac{8}{9}$$
:
Left Side Right Side Left Side Right Side
 $9x^2 - x - 8$ 0 $9x^2 - x - 8$ 0
 $= 9\left(-\frac{8}{9}\right)^2 - \left(-\frac{8}{9}\right) - 8$ $= 9(1)^2 - 1 - 8$
 $= \frac{64}{9} + \frac{8}{9} - \frac{72}{9}$ $= 9 - 9$
 $= 0$ $= 0$
Left Side = Right Side Left Side = Right Side
The roots are $-\frac{8}{9}$ and 1.
c) $\frac{8}{3}t + 5 = -\frac{1}{3}t^2$
 $\frac{1}{3}t^2 + \frac{8}{3}t + 5 = 0$
 $\frac{1}{3}(t^2 + 8t + 15) = 0$
 $t + 3 = 0$ or $t + 5 = 0$
 $t = -3$ $t = -5$

t = -3 t = -5For t = -3: For t = -5: Left Side Right Side Left Side Right Side $\frac{8}{3}t + 5 -\frac{1}{3}t^2 \frac{8}{3}t + 5 -\frac{1}{3}t^2$ $= \frac{8}{3}(-3) + 5 = -\frac{1}{3}(-3)^2 = \frac{8}{3}(-5) + 5 = -\frac{1}{3}(-5)^2$ $= -8 + 5 = -3 = -\frac{40}{3} + \frac{15}{3} = -\frac{25}{3}$ $= -3 = -\frac{25}{3}$

Left Side = Right Side The roots are -3 and -5. Left Side = Right Side

d)
$$\frac{25}{49}y^2 - 9 = 0$$

 $\left(\frac{5}{7}y - 3\right)\left(\frac{5}{7}y + 3\right) = 0$
 $\frac{5}{7}y - 3 = 0$ or $\frac{5}{7}y + 3 = 0$
 $\frac{5}{7}y = 3$ $\frac{5}{7}y = -3$
 $y = \frac{21}{5}$ $y = -\frac{21}{5}$
For $y = \frac{21}{5}$; For $y = -\frac{21}{5}$:
Left Side Right Side Left Side Right Side
 $\frac{25}{49}y^2 - 9$ 0 $\frac{25}{49}y^2 - 9$ 0
 $= \frac{25}{49}\left(\frac{21}{5}\right)^2 - 9$ $= \frac{25}{49}\left(-\frac{21}{5}\right)^2 - 9$
 $= \frac{441}{49} - \frac{441}{49}$ $= \frac{441}{49} - \frac{441}{49}$
 $= 0$ Left Side = Right Side Left Side = Right Side
The roots are $\frac{21}{5}$ and $-\frac{21}{5}$.
e) $2s^2 - 4s = 70$
 $2(s^2 - 2s - 35) = 0$
 $2(s - 7)(s + 5) = 0$
 $s - 7 = 0$ or $s + 5 = 0$
 $s = 7$ $s = -5$
For $s = 7$: For $s = -5$:
Left Side Right Side Left Side Right Side
 $2s^2 - 4s$ 70 $2s^2 - 4s$ 70
 $2(-5)^2 - 4(-5)$
 $= 98 - 28$ $= 50 + 20$
 $= 70$
Left Side = Right Side Left Side Right Side
The roots are 7 and -5 .

f)
$$4q^2 - 28q = -49$$

 $4q^2 - 28q + 49 = 0$
 $(2q - 7)(2q - 7) = 0$
 $2q - 7 = 0$
 $2q = 7$
 $q = \frac{7}{2}$
For $q = \frac{7}{2}$:
Left Side Right Side
 $4q^2 - 28q - 49$
 $= 4\left(\frac{7}{2}\right)^2 - 28\left(\frac{7}{2}\right)$
 $= 49 - 98$
 $= -49$
Left Side = Right Side
The root is $\frac{7}{2}$.

Section 4.2 Page 230 Question 10

a)
$$42 = x^2 - x$$

 $0 = x^2 - x - 42$
 $0 = (x - 7)(x + 6)$
 $x - 7 = 0$ or $x + 6 = 0$
 $x = 7$ $x = -6$
The roots are 7 and -6.

b)
$$g^2 = 30 - 7g$$

 $g^2 + 7g - 30 = 0$
 $(g - 3)(g + 10) = 0$
 $g - 3 = 0$ or $g + 10 = 0$
 $g = 3$ $g = -10$
The roots are 3 and -10.
c) $y^2 + 4y = 21$
 $y^2 + 4y = 21 = 0$

 $y^{2} + 4y - 21 = 0$ (y - 3)(y + 7) = 0 y - 3 = 0 or y + 7 = 0 y = 3 y = -7The roots are 3 and -7.

d)
$$3 = 6p^2 - 7p$$

 $6p^2 - 7p - 3 = 0$
 $(3p + 1)(2p - 3) = 0$
 $3p + 1 = 0$ or $2p - 3 = 0$
 $3p = -1$ $2p = 3$
 $p = -\frac{1}{3}$ $p = \frac{3}{2}$
The roots are $-\frac{1}{3}$ and $\frac{3}{2}$.
e) $3x^2 + 9x = 30$
 $3x^2 + 9x - 30 = 0$
 $3(x^2 + 3x - 10) = 0$
 $3(x - 2)(x + 5) = 0$
 $x - 2 = 0$ or $x + 5 = 0$
 $x = 2$ $x = -5$
The roots are 2 and -5.

f)
$$2z^2 = 3 - 5z$$

 $2z^2 + 5z - 3 = 0$
 $(2z - 1)(z + 3) = 0$
 $2z - 1 = 0$ or $z + 3 = 0$
 $2z = 1$ $z = -3$
 $z = \frac{1}{2}$
The roots are $\frac{1}{2}$ and -3 .

Section 4.2 Page 230 Question 11

a) Substitute the dimensions and given area into $A = \ell w$: 54 = (x + 10)(2x - 3) $54 = 2x^2 + 17x - 30$ $0 = 2x^2 + 17x - 84$

b) Solve the equation from part a) to find the value of x. $0 = 2x^{2} + 17x - 84$ 0 = (2x - 7)(x + 12) $2x - 7 = 0 \quad \text{or} \quad x + 12 = 0$ $2x = 7 \quad x = -12$ $x = \frac{7}{2}$

Since *x* represents a distance, it cannot be negative. So, reject the root -12. The value of *x* is $\frac{7}{2}$, or 3.5 cm.