b) Complete the square to write $y = x^2 - 18x - 59$ in vertex form. $y = x^2 - 18x - 59$ $y = (x^2 - 18x) - 59$ $y = (x^2 - 18x + 81 - 81) - 59$ $y = (x^2 - 18x + 81) - 81 - 59$ $y = (x - 9)^2 - 81 - 59$ $y = (x - 9)^2 - 140$ The vertex of the function is (9, -140).

c) Complete the square to write $y = x^2 - 10x + 31$ in vertex form. $y = x^2 - 10x + 31$ $y = (x^2 - 10x) + 31$ $y = (x^2 - 10x + 25 - 25) + 31$ $y = (x^2 - 10x + 25) - 25 + 31$ $y = (x - 5)^2 - 25 + 31$ $y = (x - 5)^2 + 6$ The vertex of the function is (5, 6).

d) Complete the square to write $y = x^2 + 32x - 120$ in vertex form. $y = x^2 + 32x - 120$ $y = (x^2 + 32x) - 120$ $y = (x^2 + 32x + 256 - 256) - 120$ $y = (x^2 + 32x + 256) - 256 - 120$ $y = (x + 16)^2 - 256 - 120$ $y = (x + 16)^2 - 376$ The vertex of the function is (-16, -376).

Section 3.3 Page 193 Question 3

a) Complete the square to write $y = 2x^2 - 12x$ in the form $y = a(x-p)^2 + q$. $y = 2x^2 - 12x$ $y = 2(x^2 - 6x)$ $y = 2(x^2 - 6x + 9 - 9)$ $y = 2[(x^2 - 6x + 9) - 9]$ $y = 2[(x - 3)^2 - 9]$ $y = 2(x - 3)^2 - 18$ Expand $y = 2(x - 3)^2 - 18$ to verify the two forms are equivalent. $y = 2(x - 3)^2 - 18$ $y = 2(x^2 - 6x + 9) - 18$ $y = 2x^2 - 12x + 18 - 18$ $y = 2x^2 - 12x$ **b)** Complete the square to write $y = 6x^2 + 24x + 17$ in the form $y = a(x - p)^2 + q$. $y = 6x^2 + 24x + 17$ $y = 6(x^2 + 4x) + 17$ $y = 6[(x^2 + 4x + 4 - 4) + 17$ $y = 6[(x^2 + 4x + 4) - 4] + 17$ $y = 6[(x + 2)^2 - 4] + 17$ $y = 6(x + 2)^2 - 24 + 17$ $y = 6(x + 2)^2 - 7$ Expand $y = 6(x + 2)^2 - 7$ to verify the two forms are equivalent. $y = 6(x^2 + 4x + 4) - 7$ $y = 6x^2 + 24x + 24 - 7$ $y = 6x^2 + 24x + 17$

c) Complete the square to write $y = 10x^2 - 160x + 80$ in the form $y = a(x-p)^2 + q$. $y = 10x^2 - 160x + 80$ $y = 10(x^2 - 16x) + 80$ $y = 10(x^2 - 16x + 64 - 64) + 80$ $y = 10[(x - 8)^2 - 64] + 80$ $y = 10[(x - 8)^2 - 64] + 80$ $y = 10(x - 8)^2 - 640 + 80$ $y = 10(x - 8)^2 - 560$ Expand $y = 10(x - 8)^2 - 560$ to verify the two forms are equivalent. $y = 10(x - 8)^2 - 560$ $y = 10(x^2 - 16x + 64) - 560$ $y = 10x^2 - 160x + 640 - 560$ $y = 10x^2 - 160x + 80$

d) Complete the square to write
$$y = 3x^2 + 42x - 96$$
 in the form $y = a(x-p)^2 + q$.
 $y = 3x^2 + 42x - 96$
 $y = 3(x^2 + 14x) - 96$
 $y = 3[(x^2 + 14x + 49) - 49] - 96$
 $y = 3[(x + 7)^2 - 49] - 96$
 $y = 3(x + 7)^2 - 147 - 96$
 $y = 3(x + 7)^2 - 243$
Expand $y = 3(x + 7)^2 - 243$ to verify the two forms are equivalent.
 $y = 3(x + 7)^2 - 243$
 $y = 3(x^2 + 14x + 49) - 243$
 $y = 3x^2 + 42x + 147 - 243$
 $y = 3x^2 + 42x - 96$

Section 3.3 Page 193 Question 4

a) Covert
$$f(x) = -4x^2 + 16x$$
 to vertex form.
 $f(x) = -4x^2 + 16x$
 $f(x) = -4(x^2 - 4x)$
 $f(x) = -4(x^2 - 4x + 4 - 4)$
 $f(x) = -4[(x - 2)^2 - 4]$
 $f(x) = -4[(x - 2)^2 + 16$
Expand $f(x) = -4(x - 2)^2 + 16$ to verify the two forms are equivalent.
 $f(x) = -4(x - 2)^2 + 16$
 $f(x) = -4(x^2 - 4x + 4) + 16$
 $f(x) = -4x^2 + 16x - 16 + 16$
 $f(x) = -4x^2 + 16x$

b) Covert
$$f(x) = -20x^2 - 400x - 243$$
 to vertex form.
 $f(x) = -20x^2 - 400x - 243$
 $f(x) = -20(x^2 + 20x) - 243$
 $f(x) = -20(x^2 + 20x + 100 - 100) - 243$
 $f(x) = -20[(x^2 + 20x + 100) - 100] - 243$
 $f(x) = -20[(x + 10)^2 - 100] - 243$
 $f(x) = -20(x + 10)^2 + 2000 - 243$
 $f(x) = -20(x + 10)^2 + 1757$
Expand $f(x) = -20(x + 10)^2 + 1757$ to verify the two forms are equivalent.
 $f(x) = -20(x + 10)^2 + 1757$
 $f(x) = -20(x^2 + 20x + 100) + 1757$
 $f(x) = -20(x^2 + 20x + 100) + 1757$
 $f(x) = -20x^2 - 400x - 2000 + 1757$
 $f(x) = -20x^2 - 400x - 243$

c) Covert
$$f(x) = -x^2 - 42x + 500$$
 to vertex form.
 $f(x) = -x^2 - 42x + 500$
 $f(x) = -(x^2 + 42x) + 500$
 $f(x) = -(x^2 + 42x + 441 - 441) + 500$
 $f(x) = -[(x^2 + 42x + 441) - 441] + 500$
 $f(x) = -[(x + 21)^2 - 441] + 500$
 $f(x) = -(x + 21)^2 + 441 + 500$
 $f(x) = -(x + 21)^2 + 941$
Expand $f(x) = -(x + 21)^2 + 941$ to verify the two forms are equivalent.
 $f(x) = -(x + 21)^2 + 941$
 $f(x) = -(x^2 + 42x + 441) + 941$
 $f(x) = -x^2 - 42x + 500$

d) Covert
$$f(x) = -7x^2 + 182x - 70$$
 to vertex form.
 $f(x) = -7x^2 + 182x - 70$
 $f(x) = -7(x^2 - 26x) - 70$
 $f(x) = -7[x^2 - 26x + 169 - 169] - 70$
 $f(x) = -7[(x - 13)^2 - 169] - 70$
 $f(x) = -7[(x - 13)^2 + 1183 - 70$
 $f(x) = -7(x - 13)^2 + 1113$
Expand $f(x) = -7(x - 13)^2 + 1113$ to verify the two forms are equivalent
 $f(x) = -7(x - 13)^2 + 1113$
 $f(x) = -7(x - 13)^2 + 1113$
 $f(x) = -7(x^2 - 26x + 169) + 1113$
 $f(x) = -7x^2 + 182x - 1183 + 1113$
 $f(x) = -7x^2 + 182x - 70$

Section 3.3 Page 193 Question 5

a) Verify that $y = x^2 - 22x + 13$ and $y = (x - 11)^2 - 108$ represent the same function. Algebraically: Expand $y = (x - 11)^2 - 108$ and compare to $y = x^2 - 22x + 13$. $y = (x - 11)^2 - 108$ $y = x^2 - 22x + 121 - 108$ $y = x^2 - 22x + 13$

Graphically: Use a graphing calculator to graph both functions together or separately using identical window settings.

b) Verify that $y = 4x^2 + 120x$ and $y = 4(x + 15)^2 - 900$ represent the same function, algebraically and graphically.

Algebraically: $y = 4(x + 15)^2 - 900$ $y = 4(x^2 + 30x + 225) - 900$ $y = 4x^2 + 120x + 900 - 900$ $y = 4x^2 + 120x$

y = 4x + 120Graphically:

c) Verify that $y = 9x^2 - 54x - 10$ and $y = 9(x - 3)^2 - 91$ represent the same function, algebraically and graphically.

Algebraically: Graphically: $y = 9(x-3)^2 - 91$ Y1=9X2-54X-10 Y2=9(X-3)2-91 $y = 9(x^{2} - 6x + 9) - 91$ $y = 9x^{2} - 54x + 81 - 91$ $y = 9x^2 - 54x - 10$ Y=-91 Y=-91 X=3 8=3

d) Verify that $y = -4x^2 - 8x + 2$ and $y = -4(x + 1)^2 + 6$ represent the same function, algebraically and graphically. Granhically:

Algebraically:

 $v = -4(x+1)^2 + 6$ $y = -4(x^2 + 2x + 1) + 6$ $y = -4x^2 - 8x - 4 + 6$ $v = -4x^2 - 8x + 2$

Oraphicany.	
Y1=-4X2-8X+2E	Y2=-4(X+1)2+6
Ă	Ň
X=-1	X=-1 Y=6

Question 6 Section 3.3 Page 193

a) Complete the square to determine the maximum or minimum value of $y = x^2 + 6x - 2$. $y = x^2 + 6x - 2$ $y = (x^2 + 6x + 9 - 9) - 2$ $y = (x^2 + 6x + 9) - 9 - 2$ $y = (x+3)^2 - 11$ Since a > 0, the graph has a minimum value of -11 when x = -3.