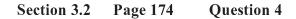

c) The coordinates of the vertex are (3, 0).

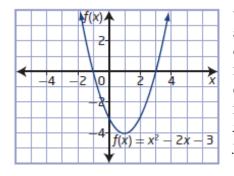
The equation of the axis of symmetry is x = 3.

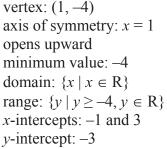
The *x*-intercept is 3, and the *y*-intercept is 8.

The graph has a minimum value of 0, since the parabola opens upward.


The domain is  $\{x \mid x \in \mathbb{R}\}$  and the range is  $\{y \mid y \ge 0, y \in \mathbb{R}\}$ .

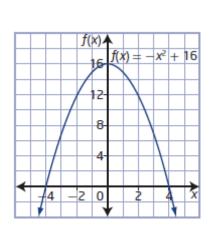



### Section 3.2 Page 174 Question 3


a) Expand f(x) = 5x(10 - 2x) and write in standard form. f(x) = 5x(10 - 2x)  $f(x) = 50x - 10x^2$  $f(x) = -10x^2 + 50x$ 

b) Expand f(x) = (10 - 3x)(4 - 5x) and write in standard form. f(x) = (10 - 3x)(4 - 5x)  $f(x) = 40 - 50x - 12x + 15x^2$  $f(x) = 15x^2 - 62x + 40$ 

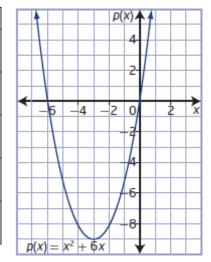



| a) |                              |
|----|------------------------------|
| x  | $f(x) = x^2 - 2x - 3$        |
| -1 | $f(-1) = (-1)^2 - 2(-1) - 3$ |
|    | = 0                          |
| 0  | $f(0) = 0^2 - 2(0) - 3$      |
|    | = -3                         |
| 1  | $f(1) = 1^2 - 2(1) - 3$      |
|    | =-4                          |
| 2  | $f(2) = 2^2 - 2(2) - 3$      |
|    | =-3                          |
| 3  | $f(3) = 3^2 - 2(3) - 3$      |
|    | = 0                          |



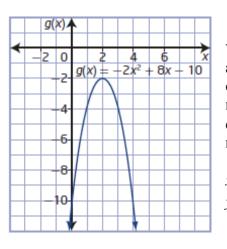


|   | 1 |
|---|---|
| h | 1 |
| ν |   |


| ~) |                        |
|----|------------------------|
| x  | $f(x) = -x^2 + 16$     |
| -4 | $f(-4) = -(-4)^2 + 16$ |
|    | = 0                    |
| -2 | $f(-2) = -(-2)^2 + 16$ |
|    | = 12                   |
| 0  | $f(0) = -(0)^2 + 16$   |
|    | = 16                   |
| 2  | $f(2) = -(2)^2 + 16$   |
|    | = 12                   |
| 4  | $f(4) = -(4)^2 + 16$   |
|    | = 0                    |



vertex: (0, 16) axis of symmetry: x = 0opens downward maximum value: 16 domain:  $\{x \mid x \in R\}$ range:  $\{y \mid y \le 16, y \in R\}$ *x*-intercepts: -4 and 4 *y*-intercept: 16


| c) |  |
|----|--|
|    |  |

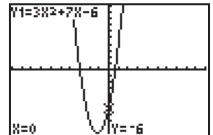
| •) |                          |
|----|--------------------------|
| x  | $f(x) = x^2 + 6x$        |
| -6 | $f(-6) = (-6)^2 + 6(-6)$ |
|    | = 0                      |
| -4 | $f(-4) = (-4)^2 + 6(-4)$ |
|    | =-8                      |
| -3 | $f(-3) = (-3)^2 + 6(-3)$ |
|    | =-9                      |
| -2 | $f(-2) = (-2)^2 + 6(-2)$ |
|    | =-8                      |
| 0  | $f(0) = 0^2 + 6(0)$      |
|    | = 0                      |



vertex: (-3, -9)axis of symmetry: x = -3opens upward minimum value: -9domain:  $\{x \mid x \in R\}$ range:  $\{y \mid y \ge -9, y \in R\}$ ; *x*-intercepts: -6 and 0 *y*-intercept: 0

| d) |                              |
|----|------------------------------|
| x  | $f(x) = -2x^2 + 8x - 10$     |
| 0  | $f(0) = -2(0)^2 + 8(0) - 10$ |
|    | =-10                         |
| 1  | $f(1) = -2(1)^2 + 8(1) - 10$ |
|    | =-4                          |
| 2  | $f(2) = -2(2)^2 + 8(2) - 10$ |
|    | =-2                          |
| 3  | $f(3) = -2(3)^2 + 8(3) - 10$ |
|    | =-4                          |
| 4  | $f(4) = -2(4)^2 + 8(4) - 10$ |
|    | =-10                         |

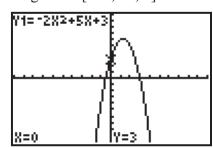



vertex: (2, -2)axis of symmetry: x = 2opens downward maximum value: -2domain:  $\{x \mid x \in R\}$ range:  $\{y \mid y \le -2, y \in R\}$ *x*-intercepts: none *y*-intercept: -10

### Section 3.2 Page 174 Question 5

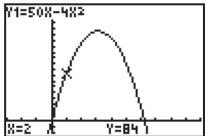
Use a graphing calculator.

a) Graph the function  $y = 3x^2 + 7x - 6$  using window settings of x: [-10, 10, 1] and y: [-10, 10, 1].


Use the minimum feature to find the vertex is located at approximately (-1.2, -10.1). So, the equation of the axis of symmetry is x = -1.2, and the graph opens upward with a minimum value of -10.1. The domain is  $\{x \mid x \in R\}$  and the range is  $\{y \mid y \ge -10.1, y \in R\}$ . Use the zero feature to find the *x*-intercepts are -3 and approximately 0.7. The *y*-intercept is -6.



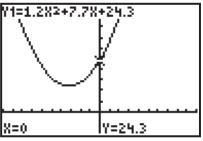
**b)** Graph the function  $y = -2x^2 + 5x + 3$  using window settings of *x*: [-10, 10, 1] and *y*: [-10, 10, 1].


Use the maximum feature to find the vertex is located at approximately (1.3, 6.1). So, the equation of the axis of symmetry is x = 1.3, and the graph opens downward with a maximum value of 6.1. The domain is

 $\{x \mid x \in \mathbb{R}\}\$  and the range is  $\{y \mid y \le 6.1, y \in \mathbb{R}\}\$ . Use the zero feature to find the *x*-intercepts are -0.5 and 3. The *y*-intercept is 3.



c) Graph the function  $y = 50x - 4x^2$  using window settings of x: [-6, 20, 2] and y: [-20, 200, 10].


Use the maximum feature to find the vertex is located at approximately (6.3, 156.3). So, the equation of the axis of symmetry is x = 6.3, and the graph opens downward with a maximum value of 156.3. The domain is  $\{x \mid x \in R\}$  and the range is  $\{y \mid y \le 156.3, y \in R\}$ . Use the zero feature to find the *x*-intercepts are 0 and 12.5. The *y*-intercept is 0.



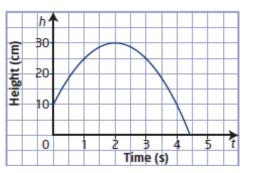
d) Graph the function  $y = 1.2x^2 + 7.7x + 24.3$  using window settings of x: [-10, 10, 1] and y: [-10, 50, 5].

Use the minimum feature to find the vertex is located at approximately (-3.2, 11.9). So, the equation of the axis of symmetry is x = -3.2, and the graph opens upward with a minimum value of 11.9. The domain is

 $\{x \mid x \in \mathbb{R}\}\$  and the range is  $\{y \mid y \ge 11.9, y \in \mathbb{R}\}\$ . There are no *x*-intercepts and the *y*-intercept is 24.3.



#### Section 3.2 Page 175 Question 6


a) For  $y = x^2 + 6x + 2$ , a = 1, b = 6, and c = 2. Use  $x = \frac{-b}{2\pi}$  to find the *x*-coordinate of the vertex.  $x = \frac{-6}{2(1)}$ x = -3Substitute x = -3 into  $y = x^2 + 6x + 2$  to find the *y*-coordinate of the vertex.  $y = (-3)^2 + 6(-3) + 2$ v = -7The vertex is located at (-3, -7). **b)** For  $y = 3x^2 - 12x + 5$ , a = 3, b = -12, and c = 5. Use  $x = \frac{-b}{2a}$  to find the *x*-coordinate of the vertex.  $x = \frac{-(-12)}{2(3)}$ x = 2Substitute x = 2 into  $y = 3x^2 - 12x + 5$  to find the *y*-coordinate of the vertex.  $y = 3(2)^2 - 12(2) + 5$ y = -7The vertex is located at (2, -7). c) For  $y = -x^2 + 8x - 11$ , a = -1, b = 8, and c = -11. Use  $x = \frac{-b}{2\pi}$  to find the x-coordinate of the vertex.  $x = \frac{-8}{2(-1)}$ x = 4Substitute x = 4 into  $y = -x^2 + 8x - 11$  to find the *y*-coordinate of the vertex.  $y = -(4)^2 + 8(4) - 11$ v = 5The vertex is located at (4, 5).

# Section 3.2 Page 175 Question 7

a) The *y*-intercept of the graph represents the height of the rock that the siksik jumped from, 10 cm.

**b)** The vertex of the graph gives the maximum height of the siksik as 30 cm at a time of 2 s.

c) The *x*-intercept of the graph gives the time that the siksik was in the air, or approximately 4.4 s.



d) The domain is  $\{t \mid 0 \le t \le 4.4, t \in \mathbb{R}\}$ . The range is  $\{h \mid 0 \le h \le 30, h \in \mathbb{R}\}$ .

e) Answers may vary. Example: Unlikely: the siksik rarely stay in the air for more than 4 s.

# Section 3.2 Page 175 Question 8

a) For a quadratic function with an axis of symmetry of x = 0 and a maximum value of 8, the parabola opens downward and the vertex is (0, 8). A parabola that opens downward with a vertex above the *x*-axis has two *x*-intercepts. Since the axis of symmetry is x = 0, one *x*-intercept will be negative and one positive.

**b)** For a quadratic function with a vertex at (3, 1), passing through the point (1, -3), the parabola opens downward. A parabola that opens downward with a vertex above the *x*-axis has two *x*-intercepts. Since the axis of symmetry is x = 3 and the *x*-intercept to the left of it is positive, then the *x*-intercept to the right will also be positive.

c) For a quadratic function with a range of  $y \ge 1$ , the parabola opens upward and its vertex is above the *x*-axis. So, there are no *x*-intercepts.

d) For a quadratic function with a *y*-intercept of 0 and an axis of symmetry of x = -1, the parabola could open upward with a vertex below the *x*-axis or open downward with a vertex above the *x*-axis. For either case, there are two *x*-intercepts. One *x*-intercept, to the right of the axis of symmetry (x = -1), is given as zero. So, the other *x*-intercept will be to the left, or less than -1, which is negative.