Example 5

Solve for an Angle Given Its Exact Sine, Cosine, or Tangent Value

Solve for θ .

a)
$$\sin \theta = 0.5, 0^{\circ} \le \theta < 360^{\circ}$$

a)
$$\sin \theta = 0.5, \, 0^{\circ} \le \theta < 360^{\circ}$$

b) $\cos \theta = -\frac{\sqrt{3}}{2}, \, 0^{\circ} \le \theta < 180^{\circ}$

Solution

a) Since the ratio for $\sin \theta$ is positive, the terminal arm lies in either quadrant I or quadrant II.

$$\sin \theta_R = 0.5$$
$$\theta_p = 30^\circ$$

How do you know $\theta_R = 30^{\circ}$?

In quadrant I, $\theta = 30^{\circ}$.

In quadrant II, $\theta = 180^{\circ} - 30^{\circ}$

$$\theta = 150^{\circ}$$

Ш ΙV

The solution to the equation $\sin \theta = 0.5$, $0 \le \theta < 360^{\circ}$, is $\theta = 30^{\circ}$ or $\theta = 150^{\circ}$.

b) Since the cosine ratio is negative, the terminal arm must lie in quadrant II or quadrant III. Given the restriction $0^{\circ} \leq \theta < 180^{\circ}$, the terminal arm must lie in quadrant II.

Use a 30°-60°-90° triangle to determine the reference angle, θ_{ν} .

$$\cos \theta_{R} = \frac{\sqrt{3}}{2}$$
$$\theta_{R} = 30^{\circ}$$

Using the reference angle of 30° in quadrant II, the measure of θ is $180^{\circ} - 30^{\circ} = 150^{\circ}$.

The solution to the equation $\cos \theta = -\frac{\sqrt{3}}{2}$, $0 \le \theta < 180^{\circ}$, is $\theta = 150^{\circ}$.

Trig.notebook April 02, 2013

Solving for Angles Given Their Sine, Cosine, or Tangent

- Step 1 Determine which quadrants the solution(s) will be in by looking at the sign (+ or −) of the given ratio.
- Step 2 Solve for the reference angle. Why are the trigonometric ratios for the reference angle always positive?
- Step 3 Sketch the reference angle in the appropriate quadrant. Use the diagram to determine the measure of the related angle in standard position.

Trig.notebook April 02, 2013

Example 6

Solve for an Angle Given Its Approximate Sine, Cosine, or Tangent Value

Given $\cos \theta = -0.6753$, where $0^{\circ} \le \theta < 360^{\circ}$, determine the measure of θ , to the nearest tenth of a degree.

Solution

The cosine ratio is negative, so the angles in standard position lie in quadrant II and quadrant III.

Use a calculator to determine the angle that has cos $\theta_{_{R}}=0.6753.$

$$\theta_{R} = \cos^{-1}(0.6753)$$

Why is cos-1 (0.6753) the reference angle?

$$\theta_{\rm p} \approx 47.5^{\circ}$$

With a reference angle of 47.5°, the measures of θ are as follows:

In quadrant II:

In quadrant III:

$$\theta = 180^{\circ} - 47.5^{\circ}$$

 $\theta = 180^{\circ} + 47.5^{\circ}$

$$\theta = 132.5^{\circ}$$

 $\theta = 227.5^{\circ}$

Key Ideas

- The primary trigonometric ratios for an angle, θ , in standard position that has a point P(x, y) on its terminal arm are $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, and $\tan \theta = \frac{y}{x}$, where $r = \sqrt{x^2 + y^2}$.
- The table show the signs of the primary trigonometric ratios for an angle, θ, in standard position with the terminal arm in the given quadrant.

	Quadrant			
Ratio	L	II	III	IV
sin θ	+	+	-	-
cos θ	+	-	-	+
tan θ	+	-	+	_

• If the terminal arm of an angle, θ , in standard position lies on one of the axes, θ is called a quadrantal angle. The quadrantal angles are 0° , 90° , 180° , 270° , and 360° , $0^{\circ} \le \theta \le 360^{\circ}$.