
Geo.notebook April 02, 2013

APPLY the Math

EXAMPLE 1

Using angle sums to determine angle measures

In the diagram, $\angle MTH$ is an **exterior angle** of $\triangle MAT$. Determine the measures of the unknown angles in $\triangle MAT$.

Serge's Solution

 $\angle MTA = 25^{\circ}$

∠MTA and ∠MTH are supplementary since they form a straight line.

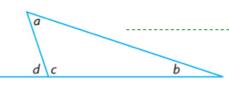
$$\angle MAT + \angle AMT + \angle MTA = 180^{\circ} - \angle MAT + (40^{\circ}) + (25^{\circ}) = 180^{\circ}$$

 $\angle MAT = 115^{\circ}$

The sum of the measures of the interior angles of any triangle is 180°.

The measures of the unknown angles are:

 $\angle MTA = 25^{\circ}; \angle MAT = 115^{\circ}.$


Geo.notebook April 02, 2013

EXAMPLE 2

Using reasoning to determine the relationship between the exterior and interior angles of a triangle

Determine the relationship between an exterior angle of a triangle and its **non-adjacent interior angles** .

Joanna's Solution

I drew a diagram of a triangle with one exterior angle. I labelled the angle measures a, b, c, and d.

$$\angle d + \angle c = 180^{\circ}$$

 $\angle d = 180^{\circ} - \angle c$

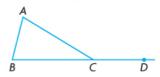
 $\angle d$ and $\angle c$ are supplementary. I rearranged these angles to isolate $\angle d$.

$$\angle a + \angle b + \angle c = 180^{\circ}$$

 $\angle a + \angle b = 180^{\circ} - \angle c$

The sum of the measures of the angles in any triangle is 180°.

$$\angle d = \angle a + \angle b$$

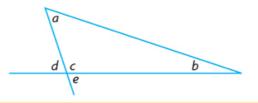

Since $\angle d$ and $(\angle a + \angle b)$ are both equal to $180^{\circ} - \angle c$, by the transitive property, they must be equal to each other.

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles.

non-adjacent interior angles

The two angles of a triangle that do not have the same vertex as an exterior angle.

 $\angle A$ and $\angle B$ are non-adjacent interior angles to exterior $\angle ACD$.

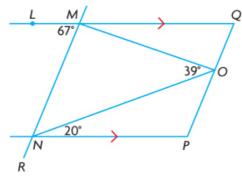

EXAMPLE 2

Using reasoning to determine the relationship between the exterior and interior angles of a triangle

Determine the relationship between an exterior angle of a triangle and its **non-adjacent interior angles** .

Your Turn

Prove: $\angle e = \angle a + \angle b$



Answer

Geo.notebook April 02, 2013

EXAMPLE 3 Using reasoning to solve problems

Determine the measures of $\angle NMO$, $\angle MNO$, and $\angle QMO$.

Tyler's Solution

 $\angle MNO + 20^{\circ} = 67^{\circ}$ $\angle MNO = 47^{\circ}$ Since $\angle LMN$ and $\angle MNP$ are alternate interior angles between parallel lines, they are equal.

 $\angle NMO + \angle MNO + 39^\circ = 180^\circ$ $\angle NMO + (47^\circ) + 39^\circ = 180^\circ$ The measures of the angles in a triangle add to 180°.

 $\angle NMO + 86^{\circ} = 180^{\circ}$ $\angle NMO = 94^{\circ}$

The measures of the angles are:

 $\angle MNO = 47^{\circ}; \angle NMO = 94^{\circ}; \angle QMO = 19^{\circ}.$

 $\angle QMO = 19^{\circ}$

Geo.notebook April 02, 2013

SUMMARY

- In any triangle, the sum of the measure of the interior angles is proven to be 180°.
- The measure of any exterior angle of a triangle is proven to be equal to the sum of the measures of the two non-adjacent interior angles.

PM11-2s3-2.gsp

2s3e2 finalt.mp4