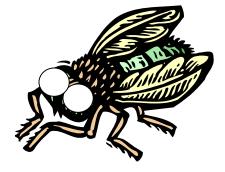


But first ... Review of Monohyrbid Crosses

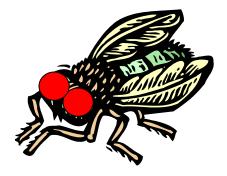
	Term	Definition	Example
1	Allele	The version of the gene that is passed on to offspring, represented by a uppercase or lowercase letter.	A or a
2	Genotype	The combination of alleles that an individual has for a particular trait. Represented by a pair of letters.	AA, Aa, or aa
3	Phenotype	The physical expression of an individual's genotype.	The physical trait that appears, such as "blue eyes" or "cleft chin."
4	Gamete	Sex cells (sperm or eggs). These contain half of the genetic information, therefore half of the alleles of each trait.	If an individual had a genotype of Aa, then the gametes they could produce would either contain the "A" allele or the "a" allele.
5	Dominant	A trait, represented by an uppercase letter, that is ALWAYS expressed when present in the genotype.	Dominant traits would be expressed by individuals with genotypes AA or Aa.
6	Recessive	A trait, represented by a lowercase letter, that is ONLY expressed when the dominant allele is absent .	Recessive traits would be expressed by individuals with the genotype aa.
7	Heterozygous	The genotype of the individual consists of both dominant and recessive alleles	Aa
8	Homozygous	The genotype consists of either both dominant or both recessive alleles.	Homozygous dominant:AA Homozygous recessive: aa
9	Probability	The number of times a certain thing will happen divided by the total possible outcomes.	A a a Aa aa a Aa aa For the punnett square above the probability of getting a heterozygous offspring is (2/4) or 50%
10	Ratio	There are genotype and phenotype ratios. These are the comparisons between all the different possible offspring. You must label the numbers you are comparing.	A a a Aa aa a Aa aa For the punnett square above the genotype ratio would be: 2Aa: 2aa

Review of Monohybrid Crosses

- Remember, monohybrid crosses involve only ONE trait (mono = one)
- Practice... In fruit flies, red eyes are dominant over white eyes.
 - Cross a white-eyed fly with a homozygous dominant redeyed fly.
 - Cross two heterozygous red-eyed flies.



Draw a Punnett square for each cross,

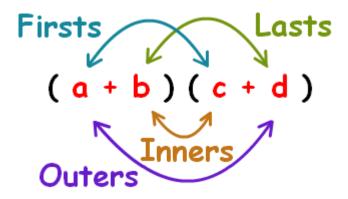

and determine the genotypic and phenotypic ratios.

Review of Monohybrid Crosses

• Can you determine the genotype of a white-eyed fly just by looking at it?

• Can you determine the genotype of a red-eyed fly just by looking at it?

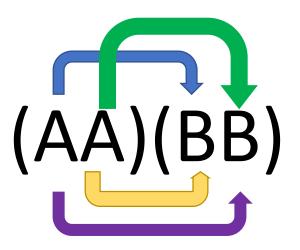
• How could you determine the genotype of the redeyed fly?

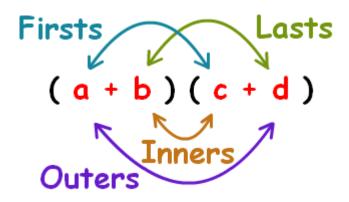

Dihybrid Cross

- a 4x4 representation of crossing \underline{TWO} traits
- monohybrid = 1 trait w/ 2 alleles
 - = 1 allele gamete each for 2x2 box
- dihybrid = 2 traits w/ 2 alleles EACH = 4 alleles
 = 2 allele gametes each for 4x4 box
 [one allele for each trait in each gamete]

Solving a Dihybrid

- Determine the genotypes of each parent
 - Given to you, you assign, or you have to solve for them
- Given: Parent #1 AABB
- Given: Parent #2 aabb

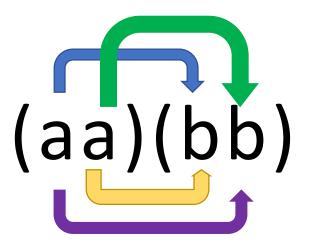

- Remember... Gregor Mendel was the first to use MATH in terms of biology.
- When solving Dihybrid Crosses we will use a math-method called FOIL



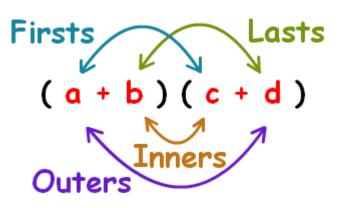
Solving a Dihybrid

- Create your dihybrid cross [4x4]
- FOIL Dad's Traits

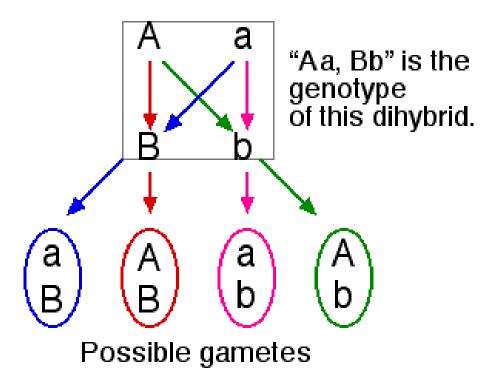
Parent #1 AABB

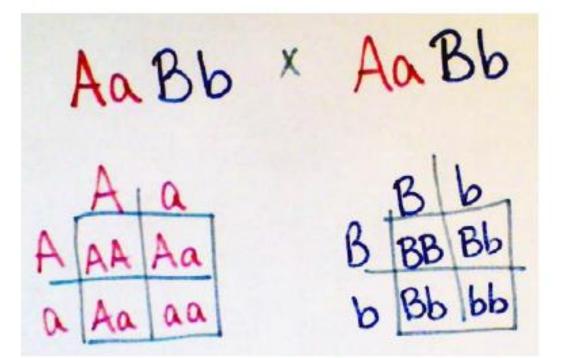


AB	AB	AB


Solving a Dihybrid

- Create your dihybrid cross [4x4]
- FOIL Momma's Traits


Parent #1 aabb



- IF YOU DON'T LIKE **FOIL** you can use the "box method"
- Find the possible gametes and then insert them into a dihybrid cross per usual!

Method TWO

- ✓ For this method, you don't need to find the possible allele combinations.
- Separate the traits and complete small Punnett squares for each.
 - Ex. The parent genotypes are AaBb x AaBb

 Now you use the information from the small squares to calculate the probability for each possibility (answer the question ⁽ⁱ⁾)

Chance of a a bb offspring?

$$aa \times bb$$

 $4 \times 1/4 = 1/16$

- You can also multiply the %... 25% x 25% = 6.25% 0.25 x 0.25 = 0.0625
- ✓ Calculate each possibility

As you can see, either method will give you the same correct answer! Try them both & decide which you prefer to use!!