1.2.1 In Class or Homework Exercise

1. Convert $95.0 \mathrm{~km} / \mathrm{h}$ into m / s.

$$
95.0 \mathrm{~km} / \mathrm{h} \times \frac{1 \mathrm{~m} / \mathrm{s}}{3.6 \mathrm{~km} / \mathrm{h}}=26.4 \mathrm{~m} / \mathrm{s}
$$

2. Convert $23.2 \mathrm{~m} / \mathrm{s}$ into km / h.

$$
23.2 \mathrm{~m} / \mathrm{s} \times \frac{3.6 \mathrm{~km} / \mathrm{h}}{1 \mathrm{~m} / \mathrm{s}}=83.5 \mathrm{~km} / \mathrm{h}
$$

3. At an average speed of $11.8 \mathrm{~km} / \mathrm{h}$, how far will a bicyclist travel in 175 min ?

$$
\begin{aligned}
& v=11.8 \mathrm{~km} / \mathrm{h} \\
& t=175 \mathrm{~min}=2.92 \mathrm{~h} \\
& \Delta d=?
\end{aligned}
$$

$$
\begin{aligned}
v & =\frac{\Delta d}{t} \\
\Delta d & =v t \\
& =(11.8)(2.92) \\
& =34.5 \mathrm{~km}
\end{aligned}
$$

4. If you average a speed of $45.0 \mathrm{~km} / \mathrm{h}$, how long will it take to travel a distance of 750 m ?

$$
\begin{aligned}
& v=45.0 \mathrm{~km} / \mathrm{h}=12.5 \mathrm{~m} / \mathrm{s} \\
& \Delta d=750 \mathrm{~m} \\
& t=?
\end{aligned}
$$

$$
\begin{aligned}
v & =\frac{\Delta d}{t} \\
t & =\frac{\Delta d}{v} \\
& =\frac{750}{12.5} \\
& =60 . s
\end{aligned}
$$

5. A confused person walks 5.0 km towards the east in 2.00 h , then 1.5 km towards the west in 0.50 h , and finally 10.0 km towards the east again in 2.25 h.
a. What is the person's average speed?

$$
\begin{array}{lrl}
\Delta d_{1}=5.0 \mathrm{~km} & \Delta d_{t} & =\Delta d_{1}+\Delta d_{2}+\Delta d_{3} \\
\Delta d_{2}=1.5 \mathrm{~km} & & =5.0+1.5+10.0 \\
\Delta d_{3}=10.0 \mathrm{~km} & & =16.5 \mathrm{~km} \\
t_{1}=2.00 \mathrm{~h} & & v=\frac{\Delta d}{t} \\
t_{2}=0.50 \mathrm{~h} & t_{t} & =t_{1}+t_{2}+t_{3} \\
t_{3}=2.25 \mathrm{~h} & & =\frac{16.5}{4.75} \\
v=? & & =4.75 \mathrm{~h}
\end{array}
$$

b. What is the person's average velocity?

$$
\begin{aligned}
& \Delta \vec{d}_{1}=5.0 \mathrm{~km} \\
& \Delta \vec{d}_{2}=-1.5 \mathrm{~km} \\
& \Delta \vec{d}_{3}=10.0 \mathrm{~km} \\
& t_{1}=2.00 \mathrm{~h} \\
& t_{2}=0.50 \mathrm{~h} \\
& t_{3}=2.25 \mathrm{~h} \\
& \vec{v}=?
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Delta \vec{d}_{t} & =\Delta \vec{d}_{1}+\Delta \vec{d}_{2}+\Delta \vec{d}_{3} & \\
& =5.0+(-1.5)+10.0 & \vec{v} & =\frac{\Delta \vec{d}}{t} \\
& =13.5 \mathrm{~km} & & =\frac{13.5}{4.75} \\
t_{t} & =t_{1}+t_{2}+t_{3} & & =2.84 \mathrm{~km} / \mathrm{h} \mathrm{east} \\
& =2.00+0.50+2.25 &
\end{array}
$$

6. A person drove 4.0 km north, and then 6.4 km south.
a. If the person's average speed was $65 \mathrm{~km} / \mathrm{h}$, how long did the trip take?

$$
\begin{aligned}
\Delta d_{1}=4.0 \mathrm{~km} & \Delta d_{t} & =\Delta d_{1}+\Delta d_{2} & v_{t}
\end{aligned}=\frac{\Delta d_{t}}{t_{t}}, ~ \begin{array}{rlrl}
\Delta d_{2}=6.4 \mathrm{~km} & & =4.0+6.4 & 65 \\
v_{t}=65 \mathrm{~km} / \mathrm{h} & & =10.4 \mathrm{~km} & 65 \\
t_{t}=? & & t_{t} & =0.16 \mathrm{~h}
\end{array}
$$

b. What was the person's average velocity?

$$
\begin{aligned}
\Delta \vec{d}_{1}=4.0 \mathrm{~km} & \Delta \vec{d}_{t} & =\Delta \vec{d}_{1}+\Delta \vec{d}_{2} & \vec{v}_{t}
\end{aligned}=\frac{\Delta \vec{d}_{t}}{t_{t}}\left(\begin{array}{llrl}
\Delta \vec{d}_{2}=-6.4 \mathrm{~km} & & =4.0+(-6.4) & \\
t_{t}=0.16 \mathrm{~h} & & =-2.4 \mathrm{~km} & \\
\vec{v}_{t}=? & & -2.4 \\
& & & =-15 \mathrm{~km} / \mathrm{h}
\end{array}\right.
$$

The average velocity is $15 \mathrm{~km} / \mathrm{h}$ south.
7. A rock thrown horizontally at a large bell 50.0 m away is heard to hit the bell 4.50 s later. If the speed of sound is $330 \mathrm{~m} / \mathrm{s}$, what was the speed of the rock?

This problem can be broken up into 2 parts, the rock moving and the sound coming back. Since we know more about the sound, start with that:

Sound

$$
\begin{aligned}
& \Delta d_{s}=50.0 \mathrm{~m} \\
& v_{s}=330 \mathrm{~m} / \mathrm{s} \\
& t_{s}=?
\end{aligned}
$$

$$
\begin{aligned}
v_{s} & =\frac{\Delta d_{s}}{t_{s}} \\
t_{s} & =\frac{\Delta d_{s}}{v_{s}} \\
& =\frac{50.0}{330} \\
& =0.15 \mathrm{~s}
\end{aligned}
$$

Rock

$$
\begin{aligned}
& \Delta d_{r}=50.0 m \\
& t_{r}=4.50-0.15 s=4.35 s \\
& v_{r}=?
\end{aligned}
$$

$$
\begin{aligned}
v_{r} & =\frac{\Delta d_{r}}{t_{r}} \\
& =\frac{50.0}{4.35} \\
& =11.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8. A person starts from home and drives with a velocity of $55 \mathrm{~km} / \mathrm{h}$ east for 30 minutes. They then drive with a velocity of $73 \mathrm{~km} / \mathrm{h}$ west for 45 minutes. Where are they?

Part 1

$\vec{v}_{1}=55 \mathrm{~km} / \mathrm{h}$
$t_{1}=30 . \mathrm{min}=0.50 \mathrm{~h}$
$\Delta \vec{d}_{1}=$?

$$
\begin{aligned}
& \vec{v}_{1}=\frac{\Delta \vec{d}_{1}}{t_{1}} \\
& 55=\frac{\Delta \vec{d}_{1}}{0.50}
\end{aligned}
$$

$\Delta \vec{d}_{1}=27.5 \mathrm{~km}$

Total

$$
\begin{aligned}
\Delta \vec{d}_{t} & =\Delta \vec{d}_{1}+\Delta \vec{d}_{2} \\
& =27.5+(-5 \\
& =-27.3 \mathrm{~km} \\
& =-27 \mathrm{~km}
\end{aligned}
$$

$$
=27.5+(-54.8) \quad \text { The person is } 27 \mathrm{~km} \text { west of their starting point. }
$$

9. Two people start at the same location. One person jogs with a velocity of 3.5 m / s east; the other person jogs with a velocity of $1.5 \mathrm{~m} / \mathrm{s}$ west. How far apart are they after 8.2 s ?

Person $1 \quad$ Person 2
$\begin{array}{ll}\vec{v}_{1}=3.5 \mathrm{~m} / \mathrm{s} & \vec{v}_{2}=-1.5 \mathrm{~m} / \mathrm{s} \\ t_{1}=8.2 \mathrm{~s} & t_{2}=8.2 \mathrm{~s} \\ \Delta \vec{d}_{1}=? & \Delta \vec{d}_{2}=? \\ \vec{v}_{1}=\frac{\Delta \vec{d}_{1}}{t_{1}} & \vec{v}_{2}=\frac{\Delta \vec{d}_{2}}{t_{2}} \\ 3.5=\frac{\Delta \vec{d}_{1}}{8.2} & -1.5=\frac{\Delta \vec{d}_{2}}{8.2} \\ \Delta \vec{d}_{1}=29 \mathrm{~m} & \Delta \vec{d}_{2}=-12 \mathrm{~m} \\ 4-12 \mathrm{~m} & 29 \mathrm{~m} \longrightarrow\end{array}$
As can be seen, the two people will be $41 m$ apart.
10. You drive a car 2.0 h at $40 \mathrm{~km} / \mathrm{h}$, then 2.0 h at $60 \mathrm{~km} / \mathrm{h}$.
a. What is your average speed?

Part 1

$$
\begin{aligned}
& v_{1}=40 . \mathrm{km} / \mathrm{h} \\
& t_{1}=2.0 \mathrm{~h} \\
& \Delta d_{1}=?
\end{aligned}
$$

$$
v_{1}=\frac{\Delta d_{1}}{t_{1}}
$$

$$
40 .=\frac{\Delta d_{1}}{2.0}
$$

$$
\Delta d_{1}=80 . \mathrm{km}
$$

Part 2

$$
\begin{aligned}
& v_{2}=60 . \mathrm{km} / \mathrm{h} \\
& t_{2}=2.0 \mathrm{~h} \\
& \Delta d_{2}=?
\end{aligned}
$$

$$
v_{2}=\frac{\Delta d_{2}}{t_{2}}
$$

$$
60 .=\frac{\Delta d_{2}}{2.0}
$$

$$
\Delta d_{2}=120 . \mathrm{km}
$$

Total

$$
\begin{aligned}
& \Delta d_{t}=2 \overline{0} 0 \mathrm{~km} \\
& v_{t}=? \\
& t_{t}=4.0 \mathrm{~h}
\end{aligned}
$$

$$
v_{t}=\frac{\Delta d_{t}}{t_{t}}
$$

$$
=\frac{2 \overline{0} 0}{4.0}
$$

$$
=50 . \mathrm{km} / \mathrm{h}
$$

Notice that in this case the average speed actually is the same as the answer that would be obtained by averaging the two speeds together; this is only because the time spent at each speed was equal.
b. Do you get the same answer if you drive $1 \overline{0} 0 \mathrm{~km}$ at each of the two speeds above (equal distances instead of equal times)?

Part 1

$$
\begin{aligned}
& v_{1}=40 . \mathrm{km} / \mathrm{h} \\
& t_{1}=? \\
& \Delta d_{1}=1 \overline{0} 0 \mathrm{~km}
\end{aligned}
$$

Part 2

$v_{2}=60 . \mathrm{km} / \mathrm{h}$
$t_{2}=?$
$\Delta d_{2}=1 \overline{0} 0 \mathrm{~km}$

Total

$$
\begin{aligned}
& \Delta d_{t}=2 \overline{0} 0 \mathrm{~km} \\
& v_{t}=? \\
& t_{t}=4.17 \mathrm{~h}
\end{aligned}
$$

$$
\begin{array}{rlr}
v_{1}=\frac{\Delta d_{1}}{t_{1}} & v_{2}=\frac{\Delta d_{2}}{t_{2}} & v_{t}
\end{array}=\frac{\Delta d_{t}}{t_{t}}
$$

No, you do not obtain the same answer since different times were spent at each speed.
11. You plan a 200. km trip on which you want to average a speed of $90 . \mathrm{km} / \mathrm{h}$. You cover the first half of the distance at an average speed of only $48 \mathrm{~km} / \mathrm{h}$. What must your average speed be in the second half of the trip to meet your goal?

Total

$$
\begin{aligned}
& \Delta d_{t}=200 . \mathrm{km} \\
& v_{t}=90 . \mathrm{km} / \mathrm{h} \\
& t_{t}=?
\end{aligned}
$$

$$
v_{t}=\frac{\Delta d_{t}}{t_{t}}
$$

$$
90 .=\frac{200 .}{t_{t}}
$$

$$
t_{t}=2.22 h
$$

Part 1

$$
\begin{aligned}
& v_{1}=48 \mathrm{~km} / \mathrm{h} \\
& \Delta d_{1}=100 . \mathrm{km} \\
& t_{1}=?
\end{aligned}
$$

$$
v_{1}=\frac{\Delta d_{1}}{t_{1}}
$$

$$
48=\frac{100}{t_{1}}
$$

$$
t_{1}=2.08 h
$$

Part 2

$$
\begin{aligned}
& t_{2}=2.22-2.08=0.14 \mathrm{~h} \\
& \Delta d_{2}=100 . \mathrm{km} \\
& v_{2}=?
\end{aligned}
$$

$$
v_{2}=\frac{\Delta d_{2}}{t_{2}}
$$

$$
=\frac{100 .}{0.14}
$$

$$
=710 \mathrm{~km} / \mathrm{h}
$$

Obviously, it would not be possible to meet the goal of an average speed of $90 \mathrm{~km} / \mathrm{h}$, since almost all of the time was used up in the first part of the race.
12. A biker rides around a track twice. The track has a radius of 70.0 m . The first trip around the track is completed in 26.8 s , while the second lap takes 32.4 s .
a. What is the average speed of the biker?

Since the radius of the track is given, the circumference of the track must be calculated:

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \pi(70.0) \\
& =440 . \mathrm{m}
\end{aligned}
$$

$$
\begin{array}{ll}
\Delta d_{t}=880 . m & v=\frac{\Delta d}{t} \\
t_{t}=59.2 s & \\
v=? & =\frac{880 .}{59.2} \\
& =14.9 \mathrm{~m} / \mathrm{s}
\end{array}
$$

b. What is the average velocity of the biker?

Since the biker is going around a circular track, he returns to his starting point and therefore has a displacement of zero.

$$
\begin{aligned}
\vec{v} & =\frac{\Delta \vec{d}}{t} \\
& =\frac{0}{59.2} \\
& =0 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

