1.1 In Class or Homework Exercise

1. A person starts at a position of 5.0 km east of his house. After running for a period of time, he undergoes a displacement of 2.3 km east. What is his new position?

$$
\begin{array}{ll}
\vec{d}_{i}=5.0 \mathrm{~km} & \Delta \vec{d}=\vec{d}_{f}-\vec{d}_{i} \\
\Delta \vec{d}=2.3 \mathrm{~km} & 2.3=\vec{d}_{f}-5.0 \\
\vec{d}_{f}=? & \vec{d}_{f}=7.3 \mathrm{~km}
\end{array}
$$

His new position is 7.3 km east of his house.
2. A person is driving a car along a straight highway. The car's position at 9:00 am is 13 km to the east of his home. The car's position at 10:30 am is 137 km to the east of his home. What is the displacement of the car?

$$
\begin{aligned}
\Delta \vec{d} & =\vec{d}_{f}-\vec{d}_{i} \\
& =137-13 \\
& =124 \mathrm{~km}
\end{aligned}
$$

The positive answer indicates that the displacement is 124 km east.
3. A delivery person drives 83 km north to pick up a package, and then 34 km south to deliver the package.
a. What was the delivery person's distance travelled?

$$
\begin{aligned}
\Delta d_{t} & =\Delta d_{1}+\Delta d_{2} \\
& =83+34 \\
& =117 \mathrm{~km}
\end{aligned}
$$

b. What was the delivery person's displacement?

$$
\begin{aligned}
\Delta \vec{d}_{t} & =\Delta \vec{d}_{1}+\Delta \vec{d}_{2} \\
& =83+(-34) \\
& =49 \mathrm{~km} \\
\Delta \vec{d}_{t} & =49 \mathrm{~km} \text { north }
\end{aligned}
$$

4. Answer the following questions based on the position-time graph shown below:

a. What is the position of the object at 1.0 s ?
$\vec{d}=+2.5 \mathrm{~m}$ from the origin
(note that the positive sign indicates the direction)
b. What is the position of the object at 4.0 s ?

The object is at the origin at $4.0 \mathrm{~s}(\vec{d}=0.0 \mathrm{~m})$
c. What is the displacement of the object between 0 and 4.0 s ?

$$
\begin{aligned}
\Delta \vec{d} & =\vec{d}_{f}-\vec{d}_{i} & \Delta \vec{d}_{t} & =\Delta \vec{d}_{1}+\Delta \vec{d}_{2} \\
& =0-1.0 & \text { or } & \\
& =-1.0 \mathrm{~m} & & =-1.0 \mathrm{~m}
\end{aligned}
$$

d. What is the distance that the object has travelled between 0 and 4.0 s ?

$$
\begin{aligned}
\Delta d_{t} & =\Delta d_{1}+\Delta d_{2} \\
& =3.0+4.0 \\
& =7.0 \mathrm{~m}
\end{aligned}
$$

