The 3'rd Kind - Keq Calculations involving ICE tables

Remember:

A chemical system can be thought of as being either:

1. At Equilibrium or

2. Not At Equilibrium

A system which is **not at equilibrium** will move spontaneously to a position of **being at equilibrium**.

In this type of problem, there will be one species which we will know the concentration of **initially and at equilibrium**. We can find the **change in the concentration** (which we abbreviate as "[C]" where the "C" stands for the words "Change in" and []'s stand for Concentration) of this species and by using **mole ratios in the balanced equation**, find the changes in concentration "[C]" of the other species. From this we can calculate the **equilibrium concentration** (which we abbreviate as "[E]") of all the species.

ICE Examples #1

Given the reaction: $N_{2(g)} + 3H_{2(g)} < -- --> 2NH_{3(g)}$

Some H_2 and N_2 are added to a container so that initially, the $[N_2]$ = 0.32 M and $[H_2]$ = 0.66 M. At a certain temperature and pressure, the equilibrium [H2] is found to be 0.30 M.

- a) Find the equilibrium $[N_2]$ and $[NH_3]$.
- b) Calculate Keg at this temperature and pressure.

Set up ICE table under the reaction

	$\bigcup N_2(g)$	+3H ₂ (g) <>	• 2NH₃(g)
Initial Conc. (I)	0.32 M	0.66 M	0
Change Conc. (C)	-0.12M	-0.36M	+ 0.24M
Equilibrium Conc (E)	0.20 M	6.30M	0.24 M

Add in the info from problem

I Find the change from initial to equilibrium

Combine (I and C) to find Equilibrium concentrations

First we write the expression for Keq: $N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

$$Keq = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

To calculate Keq, we plug in the values for the *equilibrium concentrations* of all the species.

Example 2

Consider the following equilibrium system:

$$2NO(g) + Cl_2(g) < ----> 2NOCl(g)$$

0.80 moles of NO and 0.60 moles of Cl_2 are placed into a 1.0 L container and allowed to establish equilibrium. At equilibrium [NOCl] = 0.56 M.

- a) Calculate the equilibrium [NO] O.> 4 M
- b) Calculate the equilibrium [Cl₂] 1.32 M
- c) Determine the value of Keq at this temperature.

NOTE: In a 1.0 Litre container!!! so what is the [conc]??

2NO(g) + Cl2(g) <----> 2NOCl(g)

[I]	0.80M	0.60 M	\cup
[C]	-0. 5 6M	-0.28 M	+0.56 M
[E]	0.04M	0.32 M	0.56 M

Example 3:

In another variation of ICE Problems, we are sometimes given the initial moles when we have something *other than a 1.0 L container*. In this case, you must find initial concentrations [I]. by using the familiar formula:

$$Molarity(M) = \frac{mol}{L}$$

Let's do an example:

Consider the equilibrium system: A + 3B <-- --> 2 C

0.20 moles of A and 0.60 moles of B are placed in a 2.0 L container. When equilibrium is reached, the [A] is found to be 0.08 M. Calculate the *equilibrium* [B] and the *equilibrium* [C]

Initial [A] =
$$\bigcirc . \bigcirc M$$

Initial [B] = $\bigcirc . \bigcirc M$

Notice that in this case the **equilibrium concentration** (**not moles**!) of A is given. This can go right in the table under **equilibrium concentration** [E] of A.

	A +	3B<>	2 <i>C</i>
[I]	0.10M	0.30M	\mathcal{C}
[C]	-0.02M	-0.06 M	t 0.04 M
[E]	0.08M	0.24M	0.04 M

